Scaling GPU-to-CPU Migration for Efficient
Distributed Execution on CPU Clusters

Ruobing Han
Georgia Institute of Technology
Atlanta, USA
rhan38@gatech.edu

Abstract

The growing demand for GPU resources has led to wide-
spread shortages in data centers, prompting the exploration
of CPUs as an alternative for executing GPU programs. While
prior research supports executing GPU programs on single
CPUs, these approaches struggle to achieve competitive per-
formance due to the computational capacity gap between
GPUs and CPUs.

To further improve performance, we introduce CuCC, a
framework that scales GPU-to-CPU migration to CPU clus-
ters and utilizes distributed CPU nodes to execute GPU pro-
grams. Compared to single-CPU execution, CPU cluster exe-
cution requires cross-node communication to maintain data
consistency. We present the CuCC execution workflow and
communication optimizations, which aim to reduce network
overhead. Evaluations demonstrate that CuCC achieves high
scalability on large-scale CPU clusters and delivers runtimes
approaching those of GPUs. In terms of cluster-wide through-
put, CuCC enables CPUs to achieve an average of 2.59x
higher throughput than GPUs.

CCS Concepts: « Computing methodologies — Distributed

computing methodologies.

Keywords: compiler optimization, GPU-to-CPU migration,
CPU cluster

ACM Reference Format:

Ruobing Han and Hyesoon Kim. 2026. Scaling GPU-to-CPU Mi-
gration for Efficient Distributed Execution on CPU Clusters. In
Proceedings of the 31st ACM SIGPLAN Annual Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP ’26), January 31
— February 4, 2026, Sydney, NSW, Australia. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3774934.3786435

1 Introduction

Numerous GPU applications are released weekly in fields
such as artificial intelligence [24, 45] and high-performance
computing [5, 14]. The growing demand for GPU resources,
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coupled with supply chain shortages, has significantly con-
strained their availability [9, 20, 39].

Data center maintainers frequently observe an imbalance
in usage between CPUs and GPUs. We measure the utiliza-
tion of four CPU partitions and four GPU partitions in the
Georgia Tech PACE cluster. By monitoring the Slurm sched-
uling system, we record the waiting time of all jobs submitted
between March 2nd and 8th, 2025 in Figure 1. The waiting
time represents the duration jobs wait for resources to be-
come available for execution. Figure 1 shows that CPU par-
titions experience significantly shorter waiting times than
GPU partitions. This indicates that while users wait for GPU
resources, a substantial number of CPUs remain idle.
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Figure 1. Waiting times for CPU and GPU partitions.

The imbalance in CPU/GPU usage motivates researchers
to explore using CPUs to alleviate the GPU shortage. Re-
searchers [7, 16, 21, 23, 32, 38, 42] propose compiler and
runtime solutions. With these optimizations, GPU programs
can be executed on single CPUs with high performance.

However, a gap still exists between GPU and CPU run-
times due to differences in computational capacity. CPUs are
designed to support a broad range of general applications
and cannot match the computational power of GPUs, which
are optimized for high-throughput workloads. For instance,
in 2020, NVIDIA released the A100 GPU, which delivers 19.5
TFLOP/s for single-precision floating-point computation. In
contrast, one of the most advanced CPUs released a year
later, AMD EPYC 7713, achieves only 4.096 TFLOP/s. As
GPUs continue to integrate more computational units, the
performance gap between CPUs and GPUs is widening.
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Given that CPUs are typically more accessible in data cen-
ters, this paper explores a new direction: executing GPU pro-
grams on CPU clusters. By leveraging multiple CPU nodes,
this approach aggregates greater computational resources,
bringing the overall capacity closer to that of a single GPU
and enabling GPU programs to migrate to CPUs without
significant performance loss.

Compared to a single CPU, CPU cluster migration is sig-
nificantly more challenging, as CPU clusters and GPUs have
different memory models. The GPU programming model fol-
lows a shared memory model, where all threads can access
a global memory space, and data consistency is implicitly
maintained by hardware. In contrast, CPU clusters use a
distributed memory model, where each node has its own
memory space. Thus, to support the migration of GPU pro-
grams (shared memory model) to CPU clusters (distributed
memory model), auxiliary cross-node communication opera-
tions are required to ensure data consistency.

The distributed shared memory (DSM) problem, which
aims to provide a shared memory model on a distributed
system, is a classical challenge for which researchers have
proposed numerous solutions [4, 11, 26, 33, 46]. However,
existing DSM solutions are designed for traditional CPU pro-
grams, which are typically Multiple Program Multiple Data
(MPMD) and contain relatively few memory accesses with ir-
regular patterns. Consequently, peer-to-peer communication
is often used to provide flexibility. When these DSM solu-
tions are applied to programs migrated from GPUs, which
contain a vast number of memory accesses, they introduce
significant communication overhead that degrades overall
performance. A detailed analysis is provided in Section 3.1.

In this paper, we propose CuCC (CUDA on CPU Clusters),
anew solution tailored for migrating GPU programs to CPU
clusters. GPU programs follow a Single Program Multiple
Data (SPMD) model, where all threads execute the same pro-
grams. This results in memory access patterns that are highly
regular. Our solution exploits this regularity by coalescing
multiple memory accesses into a single, larger operation and
uses collective communication primitives to achieve high
bandwidth to lower network overhead.

We implement CuCC as an end-to-end framework that
translates CUDA programs into CPU cluster executables. We
demonstrate that CuCC is 12.81x faster than existing single-
CPU solutions and achieves runtimes approaching those of
GPUs. The contributions are summarized as follows:

e Propose a solution for executing GPU programs on
CPU clusters with low communication overhead.

e Introduce an auxiliary compiler analysis for GPU-to-
CPU-cluster migration.

e Implement an end-to-end framework for migrating
GPU programs to CPU clusters.

e Evaluate the proposed solution on CPU clusters and
compare its performance against GPUs.
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Although this paper focuses on migrating CUDA applica-
tions to CPU clusters, the proposed approach is general and
not restricted to any specific GPU programming language.

2 Background
2.1 Programming Model

2.1.1 GPU. The programming model is structured with
two levels of parallelism. The GPU block represents coarse-
grained parallelism, while each GPU block consists of a fixed
number of GPU threads that provide fine-grained parallelism.
Importantly, there are no dependencies among execution
units at either level, enabling highly parallel execution.

All GPU threads access the same memory space, and modi-
fications made by one thread are visible to all other threads. !

2.1.2 CPU Cluster. A CPU cluster consists of multiple
CPU nodes (Figure 2). All nodes are connected through net-
works such as an InfiniBand. In contrast to the GPU model,
where all threads access the same memory space, CPU clus-
ters follow a distributed memory model, with each node
maintaining its own memory space. As a result, cross-node
network communication is required to ensure memory con-
sistency among the distributed nodes.
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core 0 | [ core 1 core 0 | [ core 1 core 0 | [ core 1 core 0 | [ core 1
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Figure 2. CPU Cluster Structure.

2.2 Executing GPU Programs on Single CPUs

GPUs are designed to execute a large number of light-
weight tasks, while CPUs are optimized for a smaller number
of heavier tasks. To address this disparity, researchers [21,
22, 32, 38, 42] apply compiler transformations to wrap the
workload within a CUDA block into a CPU function, which
is then executed by a CPU thread.

An example is shown above. For the GPU program (List-
ing 1), 5 * 256 GPU threads are invoked during execution.
Since thread operation overhead on CPUs is significantly
higher than on GPUs, CPUs cannot efficiently support the
same number of threads. With the proposed compiler opti-
mization (Listing 2), the entire workload of a GPU block is

'We only discuss GPU global memory for CPU cluster migration. The GPU
shared memory and local memory do not require cross-node communication
to maintain consistency, as all threads within a GPU block are scheduled to
the same CPU node for execution.
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mapped to a single function (line 1), reducing the require-
ment to just 5 CPU threads (line 10).

1 #define N 1200

2 __global__ void vec_copy(char xsrc, char *xdest) {

3 int id = blockDim.x * blockIdx.x + threadIdx.x;
| if (id < N)
5 dest[id] = src[id];

6 3}
7 int main() {
8 vec_copy<<<ceil (N/256),

()}

256>>>(src, dest);

Listing 1. Original GPU program.

void vec_copy(char *src, int block_id) {
2 #pragma omp simd

1 char =*dest,

3 for(int thread_id=0;thread_id<256; thread_id++){
|

5

6

int id = 256 * block_id + thread_id;
if (id < N)
dest[id] = srcl[id];

7 }
8}
9 int main() {

10 #pragma omp parallel for

11 for(int block_id=0;block_id<ceil (N/256);block_id++)

12 vec_copy(src, dest, block_id);

13}

Listing 2. Transformed single-node CPU program.

The transformed CPU program utilizes CPU resources for
high performance. In Listing 2, a for-loop is introduced (line
3), where each iteration represents a GPU thread. Since there
are no dependencies among these iterations, the for-loop is
well-suited for optimization using CPU SIMD instructions.
Similarly, the host program contains a parallelized for-loop
(line 11), where each iteration corresponds to a GPU block.
This for-loop can be executed by multiple CPU threads to
maximize performance.

For single-CPU migration, GPU global memory is mapped
to CPU heap memory, which is accessible to all CPU threads,
with consistency maintained by the OS and hardware. How-
ever, when extending to a CPU cluster, CPU threads are
distributed across multiple nodes, and no unified memory
space exists among all CPU threads. Thus, auxiliary commu-
nication operations are required to maintain consistency.

2.3 Allgather Communication

Our solution utilizes Allgather communication to maintain
data consistency across CPU nodes. Allgather collects data
from each node, concatenates them sequentially, and returns
the concatenated data to all nodes (Figure 3).

From a data placement perspective, Allgather can be cat-
egorized into two types: in-place and out-of-place. In
in-place Allgather (Figure 3a), the input and output share
the same buffers, so the local data in the input buffer does
not need to be moved to another location. In contrast, out-
of-place Allgather (Figure 3b) uses separate buffers for input
and output. Processing the output buffer requires not only
communication between nodes but also local memory move-
ment from the input buffer to the output buffer. Additionally,
out-of-place Allgather requires two buffers, resulting in dou-
ble memory usage compared to in-place Allgather.
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Figure 3. Allgather communication.

In addition to data placement, we observe that data dis-
tribution also affects communication overhead. Specifically,
a balanced Allgather, where all distributed nodes have the
same data size, is typically faster than an imbalanced All-
gather. For example, in a 2-node cluster with a total data size
of N GB, a balanced Allgather—where each node holds %
GB—usually outperforms an imbalanced Allgather, where
one node has % GB and the other has % GB.

Based on our network evaluation, we observe that balanced-
in-place Allgather consistently achieves the highest perfor-
mance. Therefore, CuCC utilizes balanced-in-place Allgather
communication to maintain data consistency.

3 Problem Statement and Solution
3.1 Challenges of Existing Solutions

It is challenging to migrate the GPU shared memory model
to the distributed memory space of CPU nodes. A possible
solution is to first migrate a GPU program to a single-CPU
program. Then, scale this single-CPU program to a CPU
cluster using DSM frameworks by replacing local memory
accesses with distributed memory accesses. An example of
migrating the program in Listing 1 with a popular DSM
solution, PGAS, is shown in Listing 3.

Although state-of-the-art PGAS solutions [4, 11] integrate
network optimizations like GASNet-EX [8] and RDMA, they
perform poorly for GPU program migration due to heavy
communication overhead. For example, Listing 3 introduces
1200 remote memory accesses (line 7), where each access
is only 1 byte. This large number of fragmented communi-
cations limits overall performance. We evaluate the perfor-
mance on a 32-node cluster (Figure 4); most GPU programs
do not achieve high scalability, and some even slow down
when scaled to distributed nodes, as the communication
overhead significantly exceeds the performance gains.
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1 void vec_copy(charx src, pgas::global_ptr<char> dest,
2 int block_id){
3 for(int tid=0;tid<256;tid++) {
4 int id = 256 * block_id + tid;
5 if(id < N)
6 // Async one-side remote memory access
7 pgas::remote_put(dest + id, src[id]);
8}
9}
int main() {
// Cluster-level global variable
pgas::global_ptr<char> global_dest(N);
// Distributed Execution
int c_rank = pgas::rank_me();
int c_size = pgas::rank_n();
16 int local_size = ceil(N/256)/c_size;
17 for(int bid=local_size * c_rank;
18 bid<local_size * (c_rank+1); bid++)
19 vec_copy(src, global_dest, bid);
20 %}

Listing 3. The PGAS migration for GPU program in Listing 1.
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Figure 4. Performance of CPU cluster migration using PGAS.

3.2 Insight of CuCC

As summarized in Section 3.1, GPU programs contain a
large number of threads, and each thread typically issues
a small number of memory accesses. When migrated with
existing solutions, this massive number of fine-grained mem-
ory accesses turns into a large volume of fragmented network
communications, which introduces significant overhead.

We propose a new solution, CuCC, that executes with
low network overhead. The insight is that, since GPU pro-
grams follow the SPMD model, all threads execute the same
programs, differing only by their thread index. This leads
many GPU programs to contain memory access patterns
where sequential threads access consecutive memory loca-
tions. Therefore, instead of issuing a separate network com-
munication for each GPU thread’s memory access, CuCC
coalesces all memory accesses within a GPU block and ser-
vices them with a single coarse-grained network operation.
Additionally, as all GPU blocks execute the same program,
their memory accesses are highly symmetric. This symmetry
allows CuCC to use collective communication primitives.
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4 CuCC Execution Workflow

To execute a GPU kernel on CPU cluster, CuCC follows a
three-phase workflow. In Section 6, we prove that the work-
flow is theoretically capable of supporting the execution of
all types of GPU programs on CPU clusters.

1. Partial Block Execution: In this phase, each CPU
node executes a distinct set of GPU blocks in parallel.
These GPU blocks write to non-overlapping memory
locations, with all blocks writing the same amount
of data. Importantly, some GPU blocks may not be
executed during this phase. Specifically, if a block does
not meet the requirements introduced in Section 6, its
execution is deferred to the third phase. These deferred
blocks are referred to as callback blocks.

. Balanced-In-Place Allgather: After the first phase,
each CPU node holds a unique memory copy. To en-
sure consistency across the cluster, balanced-in-place
Allgather is applied to synchronize memory spaces.

. Callback Block Execution: After Allgather, all CPU
nodes have an identical memory copy. The callback
blocks, which were not executed in the first phase,
are then executed independently by all CPU nodes.
Since all CPU nodes execute the same set of blocks,
the memory space remains identical across the cluster.

We use GPU kernel in Listing 1 to illustrate the workflow.
The program consists of five GPU blocks: blocks 0-3 each
write 256 elements, while block 4 writes only 176 elements to
dest. Figure 5 illustrates the workflow for executing the GPU
program on a two-node CPU cluster. Before kernel execution,
both CPU nodes have identical copies of the memory space.

During the partial block execution phase, GPU blocks are
split between CPU nodes for execution. To ensure that the
results can later be synchronized using balanced-in-place
Allgather, CuCC assigns blocks 0 and 1 to Node 0 and blocks
2 and 3 to Node 1. Each CPU node then writes 512 elements
to the dest array locally. GPU block 4 is designated as a
callback block and is not executed during this phase.

After the first phase, each CPU node holds a different copy
of the memory space. To synchronize the memory spaces,
CuCC invokes balanced-in-place Allgather across the CPU
cluster. After this communication, both CPU nodes have
identical memory spaces, equivalent to executing GPU blocks
0 through 3 independently on each node.

Finally, in the callback block execution phase, each CPU
node executes the callback block (GPU block 4) indepen-
dently. From a sequential perspective, the CuCC execution
workflow is equivalent to executing all callback blocks after
the other blocks. Since the GPU programming model does
not enforce a specific GPU block execution order, the results
will be consistent with those produced by the GPUs.
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Figure 5. CuCC execution workflow for Listing 1.

5 Implementation

CuCC consists of both compilation and runtime compo-
nents. CuCC first compiles the GPU source code to LLVM
IR, then applies compiler analysis and transformations to
generate CPU object files. These object files are subsequently
linked with the CuCC runtime library to produce CPU clus-
ter executables. The generated CPU cluster program follows
the workflow introduced in Section 4.

Figure 6 illustrates the process of migrating the GPU pro-
gram in Listing 1. All analysis and transformations are ap-
plied at the LLVM IR level. The source code shown in Figure 6
is provided for illustrative purposes only.

The GPU program is first analyzed by a compiler analysis,
Allgather distributable analysis (Section 6), to collect meta-
data used for generating CPU executable. Metadata values
are based on symbolic analysis. Thus, for programs with
runtime-dependent values (e.g., dynamic GPU block size),
CuCC can still perform the migration.

With the metadata, CuCC applies a template-based ap-
proach to generate CPU host module. The template consists
of three code sections corresponding to three phases in the
workflow. The first code section (Figure 6 lines 1-4 in CPU
host module) represents the Partial Block Execution phase.
To generate this section, CuCC analyzes the GPU host mod-
ule to determine the grid size (ceil (N/256)) and retrieves the
tail-divergent information from the metadata. Using these
values, CuCC generates the instruction (line 1) to calculate
the number of GPU blocks to be executed by each CPU node.
This variable (p_size) is also used to generate the Callback
Block Execution section (line 6—-8). The second code section
(line 5) represents the Balanced-In-Place Allgather phase. To
generate this section, CuCC retrieves metadata information
(mem_ptr, unit_size) to determine the variables and their
sizes that need to be communicated.

In CuCC, all GPU threads within a GPU block are always
executed by the same CPU node. Thus, for CPU kernel mod-
ule generation, which corresponds to the execution of a
single GPU block, CuCC utilizes the same compiler transfor-
mations as existing GPU-to-single-CPU solutions. CuCC is
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developed by extending the codebase of CuPBoP [21], a GPU-
to-single-CPU project reported to achieve high performance
on single CPUs. Therefore, the single-node performance is
equivalent to that of CuPBoP, which is used as the baseline.

The transformed modules are linked with the CuCC run-
time library, which provides implementations of cluster op-
erations. In our evaluation, CuCC utilizes MPI primitives to
implement these functions.

6 Allgather Distributable Analysis

To generate CPU programs that follow the CuCC three-
phase workflow, the most important decision is how to assign
GPU blocks to each CPU node. To make balanced-in-place
Allgather feasible for maintaining consistency, CuCC must
distribute GPU blocks across CPU nodes in the partial block
execution phase such that each node performs the same
amount of memory writes (balanced) and the order of mem-
ory writes aligns with the cluster ranks of the CPU nodes
(in-place). We propose a compiler analysis, Allgather dis-
tributable analysis, to analyze GPU programs and distribute
workloads in alignment with the requirements.

6.1 Terminology

Definition: Write Interval

The Write Interval of a GPU thread represents the range
of global memory addresses written by that thread. For a
GPU block, the Write Interval can be expressed as:

write_interval(block) = U write_interval(t),
teblock
where t denotes a thread within block.
For a set of GPU blocks B = {blocky, block,, . ..,blockg},
the Write Interval is the union of the Write Intervals of all
blocks in the set:

write_interval(B) = U write_interval(block).
blockeB
As an example, in the GPU kernel shown in Listing 1, the
Write Intervals for block 0 through 4 are:

[dest, dest + 256), [dest + 256, dest + 512), .., [dest + 1024, dest + 1200).

CuCC considers only the write interval for GPU global
memory access, as GPU local and shared memory accesses
do not require cross-node communication.

Definition: Allgather Distributable

Let a set of blocks B = {blocky, blocky, ..., blockg} rep-
resent the GPU blocks of a GPU kernel. The GPU kernel
is considered Allgather distributable for an N-node cluster
if there exist a subset C C B, and the set difference B — C
can be partitioned into N disjoint subsets S = {S;}, where
i=1,...,N, such that the following conditions are satisfied:

1. Equal Length of Write Intervals: All subsets S; have
write intervals of equal length:

len(write_interval(S;)) = len(write_interval(S;)), VS;,S; € S.
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11: __global__ void vec_copy(char *src,char xdest){ i 1: void vec_copy(char *src, char *dest, int block_id){ int CuCC_size();
12 int id = blockDim.x * blockIdx.x + threadIdx.x; 2 for(int tid = 0; tid < 256; t1d++) { int CuCC_rank();
13t if(id < N) : 3: int id = 256 * block_id + tid; void CuCC, Allgather(vom*
14: dest[id] = srclid]; : 4; if (id < N) size t)
i5: = Iggmglgggng 5: dest[id] = srclid]; CuCC library
76T int main() Y g 6:
(7 vec_copy <<<ceil(N/256), 256>>>(src, dest); : 7: } CPU kernel module
18: host module i
A Distril Analysi: [ GPU program transformation CPU
linking cluster
// Partial block execution
{.ynameu. e copy" 1: int p_size = (ceil(N/256)-tail_divergent)/CuCC_size(); program
e T Py . 2: #pragma omp parallel for
Htall_dluvergent 1, 3: for(int bid=p_sizexCuCC_rank();bid<p_sizex(CuCC_rank()+1);bid++)
‘Aligather": { 4:  vec_copy(src, dest, bid);
"mem_ptr": "dest", // Balanced-In-Place Allgather
5: CuCC_Allgather(mem_pir, *p_size) ;
} // Callback block execution
} tadata 6: #pragma omp parallel for
metadal 7: for(int bid = p_size * CuCC_size(); bid < ceil(N/256); bid++)
8 vec_copy(src, dest, bid); CPU host module

Figure 6.

2. Disjoint Write Intervals: The write intervals of any
two subsets are disjoint:

write_interval(S;) Nwrite_interval(S;) =0, VS; #S; €S.

3. No Gaps between Write Intervals: The union of all
write intervals in the subsets must cover the entire
write interval of the set difference:

len(write_interval(B — C)) = Z len(write_interval(S;)).
S;€S

Allgather distributable GPU kernels can be executed on
CPU clusters using the three-phase workflow. In the partial
block execution phase, each CPU node executes the workload
of a subset in S. Then, a balanced-in-place Allgather opera-
tion is invoked to synchronize the memory space across all
CPU nodes, with a length equal to len(write_interval(S;)).
Finally, in the callback block execution phase, the GPU blocks
in C are executed independently on each CPU node.

Theoretically, all GPU kernels are Allgather distributable.
Even GPU kernels that contain irregular memory access can
still satisfy the definition of Allgather distributable by setting
C equal to B. We refer to these kernels as trivial Allgather dis-
tributable. When three-phase workflow executes these trivial
kernels, the first and second phases do not perform any work,
and all GPU blocks are executed in the third phase, similar
to GPU-to-single-CPU execution. With the generalization
of Allgather distributable, CuCC is theoretically capable of
supporting all types of GPU programs.

In this paper, we primarily discuss non-trivial kernels that
benefit from distributed execution. Unless explicitly stated
otherwise, all references to Allgather distributable refer to
this non-trivial subset. In Section 7.1, we analyze real-world
GPU kernels in AI/HPC applications and demonstrate that a
large number of them are non-trivial Allgather distributable
and can be accelerated by cluster execution.

6.2 Compiler Analysis Implementation

Given the abstract definition, implementing a compiler
analysis to detect the Allgather distributable property poses
challenges. To address this, we break down the Allgather
distributable criteria into a series of conditions suitable for
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static analysis. During compiler analysis, CuCC identifies all
write instructions that target GPU global memory. For each
write instruction, the following conditions are checked.

1. When treating the GPU block index and block size as
constants, the index of the write position is an affine
function of the thread index, with an invariant coeffi-
cient and intercept.

2. The write instruction is not enclosed within condi-
tional statements with thread-variant conditions, un-
less the conditional statements are tail divergent.

3. When treating the thread index and block size as con-
stants, the index of the write position is an affine func-
tion of the block index with a positive coefficient.

The first condition ensures that each block writes the
same number of bytes. In most real GPU applications, each
thread writes to a memory location determined by its global
index (i.e., blockIdx.x X blockDim.x + threadldx.x). When
the memory write index is an affine function of the thread
index, each thread writes the same amount of data. Since the
GPU programming model enforces that all blocks contain
the same number of threads, this guarantees that all blocks
write the same number of bytes to memory.

The second condition extends the first condition to cases
where write instructions are enclosed within conditional
statements (e.g., if-else statements). If the conditional state-
ment is thread-variant, it cannot be guaranteed that each
block has the same number of threads executing the write in-
struction; thus, blocks may write different amounts of bytes,
which is not suitable for three-phase workflow.

We observe that the second condition frequently excludes
GPU applications that satisfy all other conditions. For exam-
ple, the GPU program in Figure 6 contains a global memory
write, where the write index is an affine function of both the
thread index and block index. Nevertheless, this write instruc-
tion is enclosed within an if-statement with a thread-variant
condition (id<N), causing it to fail the second condition.

To enable more GPU kernels to be migrated to CPU clus-
ters, we relax the second condition and introduce a concept
called tail divergence. The key insight is that a specific if-
statement pattern is widely present in GPU programs. When
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the output data size is not a multiple of the block size, GPU
programs include if-statements to filter out out-of-bound
memory accesses. These if-statements evaluate to True for
all blocks except the last block. We refer to such if-statements
as tail divergent, as they only diverge at the tail block. The
GPU kernel in Figure 6 is tail divergent, as the if-statement
(line 3) can evaluate to false only in the last block. For GPU
kernels with tail-divergent write instructions, the last block
can be designated as a callback block, while the remaining
blocks write an equal number of bytes.

The first and second conditions ensure that all GPU blocks
(except the tail block) write the same amount of data, a re-
quirement for achieving balanced. The third condition, on
the other hand, ensures that the write locations increase
linearly with the GPU block index, which is necessary for
achieving in—place. This enables CuCC to partition the GPU
blocks evenly in ascending order and assign each partition
to the CPU node corresponding to its cluster rank.

Kernels that satisfy all three conditions are classified as
Allgather distributable, and the compiler records the corre-
sponding information in the metadata. As shown in Figure 6,
the metadata includes tail divergence (tail_divergent), the
memory variables that require communication (mem_ptr),
and the number of bytes each block writes (unit_size). This
metadata is then used to generate CPU cluster executable.

The conditions form a sufficient but not necessary condi-
tion for the actual Allgather distributable criteria. As a result,
the analysis may produce false negatives. In CuCC, GPU ker-
nels mistakenly identified as not Allgather distributable are
executed independently by all CPU nodes. This ensures that
false-negative cases still maintain correctness. Despite the po-
tential for false negatives, our evaluation demonstrates that
these conditions accurately identify Allgather distributable
kernels in real-world benchmarks.

7 Evaluation

We use two CPU clusters: a Thread-Focused cluster that fea-
tures CPUs with high thread-level parallelism, and a SIMD-
Focused cluster that is equipped with CPUs supporting wide
SIMD instructions. It is important to note that while these
names highlight specific architectural strengths, both CPUs
support SIMD instructions and multi-core execution; we en-
able both optimizations on both clusters. Both clusters are
connected via a 100 Gb/s InfiniBand network with RDMA
support. Detailed specifications are provided in Table 1.

Table 1. Cluster Specifications.

Single Node Cores/ |[FLOPs
Name Nodes Year Network
Config. SMs | (Tera)
SIMD-Focused | 32 |2 X Intel 6226 |2019| 24 4.15 |100 Gbps IB
Thread-Focused| 4 [2Xx AMD 7713|2021| 128 8.19 |100 Gbps IB
A100 GPU 1 NVIDIA A100 | 2020 | 108 19.5 N/A
V100 GPU 1 NVIDIA V100 | 2017 | 80 15.7 N/A
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For performance evaluation, to reduce noise, we filter out
GPU programs with kernel execution times less than 100
ms on an NVIDIA A100 GPU. Each experiment is executed
seven times, and the median is reported as the final result.

7.1 Coverage Evaluation

We analyze the generalization of Allgather distributable
in real-world GPU kernels. We analyze the kernels in two
popular Al models: BERT [15], for Natural Language Process-
ing, and Vision Transformer (ViT) [18], for Computer Vision.
Since many GPU programs in Al applications are generated
by Deep Learning Compilers, we compile the PyTorch im-
plementations of these models with Triton [44] to generate
GPU programs (NVVM IR) and analyze them. We also ana-
lyze GPU programs implemented manually in CUDA from
Hetero-Mark GPU benchmarks [43] for HPC applications.

The coverage is demonstrated in Figure 7. All 21 kernels
in the ViT and BERT models are Allgather distributable.
The high coverage is due to the kernels being lowered from
the Triton language. Compared to low-level GPU program-
ming languages like CUDA and OpenCL, Triton provides a
more abstract programming interface. For example, Triton
does not support inter-block barriers, which encourages the
generation of GPU programs with regular memory access
patterns that do not have data races between blocks, making
it favorable to execute these blocks in distributed nodes.

On the other hand, the Hetero-Mark benchmark contains
manually written CUDA kernels, each with a unique code
structure. In this benchmark, 8 of the 13 GPU kernels are
Allgather distributable. Of the remaining five, four have mem-
ory access patterns that overlap the written interval, which
makes it difficult to maintain data consistency in a distributed
system, and one contains indirect memory access, making
it impossible to analyze statically. To support these kernels,
peer-to-peer communication is needed, which introduces
high network overhead and may outweigh the performance
gain from CPU cluster execution.

VIT (15)

Distributable (29)
BERT (6)
Indirect Access (1)@

Hetero-Mark (13) Access Overlap (2)[]
Non-dist (5)

Non-affine Index (2)[

Figure 7. Coverage Evaluation for Allgather Distributable.
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7.2 Performance Evaluation

Eight GPU programs, previously used in other GPU mi-
gration projects [6, 10, 17, 21, 22, 27, 28], are used to evaluate
the performance. We do not directly reuse the kernels in Sec-
tion 7.1, as we find that their execution times are too short
to reflect meaningful speedup. Specifically, as GPU kernels
generated by Triton are hard-coded with bound checking,
making it hard to scale the data size to increase the workload
to make the runtime evaluation stable.

We execute CuCC on clusters of varying sizes and present
the results in Figure 8. The scalability evaluations follow
the principle of strong scalability, where the problem size
remains fixed across all cluster configurations.

For SIMD-Focused cluster, most kernels demonstrate high
scalability on 2-node and 4-node clusters. As the cluster size
increases, Kmeans and Transpose fail to achieve further per-
formance gains and even experience slower execution times.
Similar behavior is observed on Thread-Focused cluster.

The Matrix Transpose kernel consists of lightweight oper-
ations primarily involving memory movement. As the cluster
size increases, the memory access overhead on each node
decreases. However, the overall communication volume re-
mains constant since the matrix size does not change. Con-
sequently, as the per-node execution time decreases, the
communication overhead becomes increasingly significant,
limiting scalability. In contrast, for other kernels, the com-
munication overhead is negligible compared to the total
execution time. This overhead is illustrated in Figure 9.

For the Kmeans, the GPU program consists of 313 GPU
blocks. When executed on a 16-node cluster, each CPU node
is assigned 19 GPU blocks. Each GPU block is executed by
a CPU thread, resulting in a CPU thread count close to the
number of available CPU cores (24 cores). However, when
scaling up to a 32-node cluster, each CPU node is assigned
fewer GPU blocks, which cannot efficiently utilize the CPU
cores, thereby limiting further scalability.

Another reason for the Kmeans slowdown is the overhead
caused by the callback blocks. When executed on a 16-node
cluster, each CPU node processes 19 GPU blocks (L%? ) dur-
ing the partial block execution phase, while 9 GPU blocks
(313 — 16 X 19) are designated as callback blocks to be exe-
cuted after the Allgather operation. Each CPU node executes
28 GPU blocks in total. However, when the cluster scales up
to 32 nodes, each CPU node processes only 9 GPU blocks
during the partial block execution phase and executes 25
callback blocks. Thus, each node executes 34 GPU blocks in
total, which leads to a overall execution time slowdown.

On the other hand, the FIR (Finite Impulse Response)
achieves near-linear scalability, even on a 32-node cluster.
FIR involves heavy computation, including a for-loop that
traverses the input sequence to accumulate results. The com-
puted results are scalars, making FIR computation-intensive
with minimal memory access overhead. Consequently, the
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Figure 8. CuCC scalability evaluation results.

communication overhead is much lower than the computa-
tion, making it well-suited for scaling to large clusters.
Thread-Focused cluster also achieves speedup compared
to single-node, however, the scalability is lower than SIMD-
Focused cluster. For instance, the Transpose kernel achieves
a 2.88x speedup on the 4-node SIMD-Focused cluster, but
only a 1.14x speedup on 4-node Thread-Focused cluster.

—— Kmeans
FIR
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I o ©
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N
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Figure 9. Network overhead in SIMD-Focused cluster.
The difference in scalability can be attributed to two fac-

tors. First, a single Thread-Focused node contains 128 CPU
cores, whereas a single SIMD-Focused node has only 24 CPU
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cores. Consequently, for GPU kernels with N blocks, the
Thread-Focused cluster cannot achieve further speedup be-
yond % nodes, as adding more nodes would result in idle
CPU cores. In contrast, the upper bound of scalability for the
SIMD-Focused cluster is much higher, at % nodes. Second,
as further discussed in Section 8.2, a single Thread-Focused
node usually achieves significantly higher performance than
a single SIMD-Focused node. The expected speedup for a

K-node cluster can be estimated using Amdahl!’s law:

single node execution

speedup =

single node execution

communication + 7

Since both SIMD-Focused and Thread-Focused clusters
have the same network bandwidth, their communication
overheads are similar. However, the single node execution
time on the SIMD-Focused nodes is greater than that on the
Thread-Focused nodes. Consequently, for the same K, the
SIMD-Focused cluster demonstrates better scalability.

7.3 Comparison with PGAS Solution

PGAS is another approach for GPU-to-CPU-cluster migra-
tion. To migrate a GPU program, the corresponding mem-
ory variables are replaced with PGAS global variables, and
their associated read/write operations are substituted with
remote memory access (Section 3.1). PGAS is designed for
general programs, which uses fine-grained remote access for
flexibility. For the example in Listing 3, the PGAS solution
performs 1200 cluster-level communication operations (line
7). In contrast, CuCC utilizes coarse-grained collective com-
munication. The CPU program generated by CuCC contains
only a single collective communication operation (Figure 6,
CPU host module, line 5).

We migrate the GPU benchmark using UPC++ [4], one
of the most popular PGAS implementations, and execute it
on SIMD-focused cluster. We calculate the relative runtime
of PGAS and CuCC and present the results in Figure 10.
Compared to PGAS, CuCC achieves higher performance
across all benchmarks and scales. Moreover, the speedup
becomes increasingly significant as the cluster size grows.
After filtering out the Transpose benchmark as an outlier,
CuCC achieves an average speedup of 4.09X over the PGAS
solution on 2-node cluster and 12.81X on 32-node cluster.

CuCC and PGAS exhibit the most significant runtime dif-
ference in Transpose benchmark. In Transpose, data move-
ment constitutes the majority of the workload. This data
movement involves GPU global memory, which, in PGAS
solution, is mapped to remote memory access. The original
GPU program assigns a single thread to handle each matrix
element. Therefore, for an N X N matrix, the PGAS program
results in N% communications, introducing substantial over-
head. In contrast, CuCC coalesces all memory accesses and
requires only a single Allgather communication.
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Figure 10. CuCC and PGAS solution runtime comparison.

CuCC and PGAS achieve similar performance on the GA
and BinomialOption benchmarks. In GA (Gene Alignment),
remote memory access occurs only when specific target gene
sequences are found in the query gene sequence, which hap-
pens infrequently for the given dataset. In BinomialOption
benchmark, only the first thread in each GPU block writes to
global memory, resulting in minimal communication over-
head. As a result, CuCC and PGAS exhibit similar runtimes.

7.4 CPU Cluster vs GPU

We compare the performance of CPU clusters and GPUs.
Two GPUs, the NVIDIA A100 and V100, released in the
same era as the evaluated CPUs, are used for comparison.

7.4.1 Runtime Analysis. We measure the execution time
of GPUs running the original GPU programs and the exe-
cution time of CPUs running the migrated CPU programs.
The results are presented in Figure 11. For CPU runtimes, we
report the best result achieved across various cluster sizes.

On average (geometric mean), the SIMD-Focused cluster
has a runtime that is 2.55X slower than the NVIDIA V100
GPU and 4.14X slower than the NVIDIA A100 GPU. In com-
parison, the Thread-Focused cluster achieves a runtime that
is 1.57x slower than the V100 and 2.54% slower than the A100.
We provide a detailed analysis of representative applications:

Transpose: Both CPU platforms achieve lower execution
times than the V100 and A100 GPUs. The Matrix Transpose
is memory-intensive, involving frequent transfers between
global memory and shared memory. CPUs benefit from large
last-level caches (SIMD-Focused CPU: 19.25 MB, Thread-
Focused CPU: 256 MB), which are comparable in size to
those on GPUs (V100: 6 MB, A100: 40 MB). Additionally,
these memory transfers can be efficiently optimized using
SIMD instructions, enabling CPUs to deliver performance
that is close to or even better than GPUs.
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BinomialOption: The program features a two-level nested
for-loop and is highly compute-intensive, resulting in signif-
icant workloads for each GPU thread. Each GPU block per-
forms an internal reduction, with only the first GPU thread
writing a scalar value to global memory. This memory ac-
cess pattern is ideal for CPU cluster migration, as it incurs
low communication overhead. Consequently, the Thread-
Focused CPU cluster achieves the highest performance with
4-node execution. With a computational capacity of up to
32 TFLOPs, the 4-node Thread-Focused CPU cluster outper-
forms both the A100 (19.5 TFLOPs) and V100 (14 TFLOPs).

The SIMD-Focused CPU cluster achieves its highest per-
formance with 32 nodes, further demonstrating that Bino-
mialOption is well-suited for CPU clusters. However, the
SIMD-Focused cluster does not achieve the same level of per-
formance as the Thread-Focused cluster. This is because the
nested for-loop in the GPU program has loop dependencies
that cannot be parallelized with SIMD.

EP and GA: On both benchmarks, GPUs outperform CPU
clusters by a factor of 5xX-10%. These programs contain rel-
atively few GPU blocks (EP: 512, GA: 256), which cannot
fully utilize thread-level parallelism in large-scale CPU clus-
ters. Additionally, the kernel code includes for-loops that
cannot be optimized with SIMD instructions. As a result,
these programs are unable to effectively leverage either the
thread-level or data-level parallelism available in CPUs.

7.4.2 Throughput Analysis. In data centers, CPUs, de-
signed for general applications, are typically much more
accessible than GPUs. For example, the TACC Lonestar6 clus-
ter [2] has 560 CPU nodes but only 16 GPU nodes. Similarly,
the Frontera cluster [1] contains 8,368 CPU nodes and only
90 GPU nodes. This vast difference in quantity enables CPUs
to provide significantly more aggregate compute capacity,
making them well-suited to complement GPU resources.
We estimate the cluster-wide throughput for the TACC
Lonestar6 cluster (Figure 12). The throughput of batch pro-
cessing for each GPU program is measured over a one-second
time frame. The cluster contains a significant number of
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Thread-Focused CPUs, providing substantial aggregated com-
putational capacity. On average, instead of executing pro-
grams on GPU nodes alone, utilizing these additional CPU
nodes improves throughput by 3.59x.

Based on this cluster-wide throughput analysis, we con-
clude that GPU-to-CPU migration can unlock the potential
of idle CPU resources to alleviate GPU shortages. Specifi-
cally, for batch-processing applications that are less sensitive
to latency, executing on CPU clusters can achieve higher
throughput compared to GPU execution.

8 Discussion
8.1 Target GPU Applications

Our solution proposes integrating multiple CPU nodes
to execute GPU programs with minimal network overhead.
Thus, the benefit a GPU application receives depends highly
on two factors.

Parallelism: Our solution applies GPU block-level paral-
lelism, in which GPU blocks are distributed to CPU nodes for
parallel execution. Therefore, it is critical to have a sufficient
number of GPU blocks to distribute. For example, to achieve
linear scalability for a CPU cluster with C nodes, where each
node has T CPU cores, we need at least C X T GPU blocks to
fully utilize the CPU resources.

Local Execution Overhead: If the local execution (e.g.,
computation, local memory access) is heavy, migrating to
CPU-cluster execution significantly decreases the execu-
tion time, bringing an end-to-end speedup. In Sec. 7.2, we
found that all GPU applications achieve a speedup from
CPU-cluster migration compared to the single-CPU solu-
tion. This is because the input GPU programs are originally
designed for single-GPU execution. As a single GPU typi-
cally has higher capacity than a single CPU, the workload
designed for a single GPU is inherently heavy for a single
CPU execution, which allows it to benefit from distributing
the workload to CPU clusters.

8.2 Target CPU Architectures

The SIMD-Focused CPU (Intel Gold 6226) provides wide
SIMD instructions (AVX-512), while the Thread-Focused
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CPU (AMD EPYC 7713) offers high thread-level parallelism
with 64 cores per socket. To ensure a fair comparison be-
tween them, in this section, we limit execution on the Thread-
Focused cluster nodes to 64 CPU cores. This results in compa-
rable theoretical computational capacities: 4.147 TFLOPs for
the SIMD-Focused cluster and 4.096 TFLOPs for the Thread-
Focused cluster.

We compare the runtime performance of the two clus-
ters. As shown in Figure 13, the Thread-Focused cluster
demonstrates significantly higher performance for migrated
GPU programs. Based on the geometric mean, the Thread-
Focused cluster is 4.61%, 4.66%, and 4.32X faster than the
SIMD-Focused cluster for 1, 2, and 4 nodes, respectively.

For a single-node, the largest performance difference is ob-
served in the BinomialOption kernel, where Thread-Focused
CPUs are 55X faster than SIMD-Focused CPUs. The Binomi-
alOption contains 1024 GPU blocks, each with a non-parallel
for-loop to calculate accumulated values. This structure is
highly suited to thread-level parallelism, as the large number
of blocks can be executed in parallel. Conversely, since the
kernel includes a non-parallel for-loop as its inner loop, it
is challenging to apply SIMD optimization. As a result, the
SIMD-Focused CPU, which is optimized for data-parallel
operations, achieves lower performance compared to the
Thread-Focused CPU, which excels in thread-parallel work-
loads.

The SIMD-Focused and Thread-Focused clusters show the
closest performance on the Transpose kernel. In single-node
execution, the Thread-Focused CPU is 1.3X faster than the
SIMD-Focused CPU. The Transpose consists of parallelized
for-loops, with the loop body primarily containing memory
movement operations, which are highly amenable to SIMD
optimization. To further analyze performance, we measured
execution time with SIMD optimization disabled. Compared
to execution with SIMD optimization enabled, the Thread-
Focused CPU showed no performance degradation, while
the SIMD-Focused CPU experienced a slowdown of 61.66%.

Based on the evaluation, we conclude that for executing
migrated GPU programs, CPUs with a higher core count are
more likely to achieve high performance, and thread-level
parallelism is more effective than data-level parallelism.

8.3 Future Directions for GPU-to-CPU Migration

Based on the evaluation result, we propose several sug-
gestions for future GPU-to-CPU migration solutions.
Workload Redistribution: Our evaluation reveals that
GPU programs with few GPU blocks cannot scale effectively
to large CPU clusters. For instance, for a 4-node CPU cluster
with 64 cores per node, at least 256 GPU blocks are required
to fully utilize thread-level parallelism in CPUs.

In addition to parallelism, adjustable block sizes could also
help redistribute workloads to align with hardware capabili-
ties. After GPU-to-CPU migration, each GPU block maps to
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a CPU thread, effectively replacing a GPU Streaming Multi-
processor (SM) with a CPU core. Since GPU SMs and CPU
cores have different computational capacities, workloads
optimized for an SM may not be well-suited for a CPU core.

However, in practical GPU programs, developers often
hard-code block sizes to control resource utilization within a
GPU SM, such as shared memory and registers. These hard-
coded values create challenges when attempting to modify
the number of blocks through compiler transformations.

Therefore, we suggest developing a more flexible GPU
programming framework that enables the adjustment of GPU
block workloads through compiler transformations. Such a
framework would not only facilitate GPU-to-CPU migration
but also benefit other portable programming solutions.
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SIMD Optimization: CPUs leverage both data-parallelism
and thread-parallelism to achieve high performance. How-
ever, our evaluation reveals that utilizing data-parallelism in
transformed CPU programs is more challenging.

In the transformed CPU programs, a GPU thread is re-
placed by an iteration of a for-loop. To achieve high per-
formance, each GPU thread should ideally be executed by
a lane of an SIMD instruction. Although these iterations
are independent, applying SIMD optimization to such for-
loops remains challenging. This is because these parallel
for-loops are usually the outermost loops in transformed
CPU programs, whereas SIMD instructions are most suitable
for parallelizing inner loops. Additionally, Han et al. [23]
suggest that transformed CPU programs often involve com-
plex control flow and data flow, making them difficult for
static analysis.

In our evaluation, we observed that Thread-Focused CPUs
typically achieve higher performance than SIMD-Focused
CPUs, even when both have the same peak theoretical perfor-
mance. This observation highlights the need for developing
SIMD optimizations tailored for CPU programs transformed
from GPU programs.

8.4 Cost and Energy Aspects

Our solution proposes a way to utilize idle CPU resources
to alleviate the GPU shortage. It is important to note that
idle CPUs have non-negligible energy consumption [30, 36].
Consequently, cloud providers often offer spot services at
discounted rates [25, 31], encouraging users to leverage these
idle resources. Based on these observations, we believe our
solution, which offers a new way to utilize idle CPUs, pro-
vides an attractive option for saving energy and reducing
costs in data centers.

9 Related Work
9.1 GPU-to-CPU Migration

To address the disparity in parallelism between GPU pro-
grams and CPU architectures, researchers [42] propose com-
piler transformations to group lightweight GPU workloads.
This approach significantly reduces the number of threads
required for the transformed CPU programs and is widely
adopted in projects supporting SPMD programs on CPUs [7,
16, 35, 37, 40, 41, 47]. Han et al. [23] highlight that trans-
formed CPU programs are often incompatible with existing
optimizations and propose novel compiler and runtime opti-
mizations. Moses et al. [32] propose to optimize the migra-
tion with a polyhedral model.

All existing GPU-to-CPU projects focus on single CPUs,
whereas our solution extends migration to CPU clusters.

9.2 Single-Device to Multi-Device Migration

Researchers propose solutions to migrate programs writ-

ten for a single device to execute on multiple devices. OmpSS [19]

Ruobing Han and Hyesoon Kim

and StarPU [3] are frameworks that offload workloads to
distributed nodes. These solutions focus on inter-kernel
parallelism, where a single task is executed exclusively by
one device. In contrast, our project focuses on intra-kernel
parallelism, where multiple distributed nodes collaborate to
execute a single task (i.e., GPU kernel).

Other intra-kernel parallelism solutions either rely on
hardware-supported shared memory to maintain data con-
sistency [12, 13] or use peer-to-peer communication to syn-
chronize CPU and GPU memory on the same node [29, 34].
Our work is the first to migrate a single GPU program to a
CPU cluster, an environment with no hardware-supported
shared memory and where peer-to-peer communication is
too expensive for high performance.

9.3 Partitioned Global Address Space

PGAS is a parallel programming model that maintains a
global memory space across distributed nodes. The global
memory is partitioned among nodes, and PGAS provides
primitives that allow each node to access memory located
on other nodes. PGAS is a widely used model with many
implementations (e.g., UPC++ [4], SHMEM [11]).

These solutions are designed for general programs, utiliz-
ing flexible but costly communication operations. However,
for GPU-to-CPU-cluster migration, communication over-
head is a significant concern due to the high volume of com-
munication. Our work analyzes common patterns in GPU
programs and proposes the use of coarse-grained collective
communication to reduce network overhead.

10 Conclusion

We introduce CuCC, a framework for migrating GPU pro-
grams to CPU clusters. CuCC incorporates compiler analysis
and transformations to generate CPU cluster programs with
low communication overhead. Our evaluation demonstrates
that GPU programs can be efficiently executed on CPU clus-
ters, achieving execution times within the same order of
magnitude as GPUs. Furthermore, since modern data centers
typically contain far more CPU nodes than GPUs, cluster-
wide throughput analysis shows that CPUs achieve 2.59x
higher throughput compared to GPU execution.

As the industry moves toward higher-bandwidth networks
such as 400 Gbps and 800 Gbps, the performance of clustered
CPUs will continue to improve. Hence, we expect that run-
ning GPU programs on clustered CPUs will become even
more compelling.
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