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Abstract—Incremental builds are commonly employed in
software development, involving minor changes to existing source
code that is then frequently recompiled. Speeding up incremental
builds not only enhances the software development workflow but
also improves CI/CD systems by enabling faster verification steps.

Current solutions for incremental builds primarily rely on
build systems that analyze file dependencies to avoid unnecessary
recompilation of unchanged files. However, for the files that do
undergo changes, these build systems simply invoke compilers to
recompile them from scratch. This approach reveals a fundamental
asymmetry in the system: while build systems operate in a stateful
manner, compilers are stateless. As a result, incremental builds are
applied only at a coarse-grained level, focusing on entire source
files, rather than at a more fine-grained level that considers
individual code sections.

In this paper, we propose an innovative approach for enabling
the fine-grained incremental build by introducing statefulness
into compilers. Under this paradigm, the compiler leverages its
profiling history to expedite the compilation process of modified
source files, thereby reducing overall build time. Specifically, the
stateful compiler retains dormant information of compiler passes
executed in previous builds and uses this data to bypass dormant
passes during subsequent incremental compilations.

We also outline the essential changes needed to transform
conventional stateless compilers into stateful ones. For practical
evaluation, we modify the Clang compiler to adopt a stateful
architecture and evaluate its performance on real-world C++
projects. Our comparative study indicates that the stateful version
outperforms the standard Clang compiler in incremental builds,
accelerating the end-to-end build process by an average of 6.72%.

I. INTRODUCTION

In modern software development workflows, developers
often add new features or fix existing issues in already-
established codebases. A typical development cycle starts
by integrating a new patch into the current codebase. This
is followed by the build and execution phases. The results
of these runtime tests then guide further code revisions. In
this setup, projects go through multiple build cycles featuring
incremental code changes. Additionally, Continuous Integration
and Continuous Deployment (CI/CD) systems, which are
essential parts of today’s project management frameworks,
also rely on incremental builds [22]. These CI/CD systems add
new commits to existing codebases, and then compile and run
the code to make sure that these changes do not negatively
affect current functionalities. Incremental builds are also used
in other scenarios. For example, [26], [25] use incremental

builds to explore the configuration space of Linux kernels, while
[34] introduces an on-demand instrumentation framework that
speeds up the compilation process through incremental builds.

TABLE I: RECENT COMMITS IN THE LLVM PROJECT.

Commits Changed Functions
Unchanged Functions

in Changed Files
Changed
C++ Files

96e1914 1 53 1
26f230f 2 40 2
967d953 8 178 1
aca23d8 1 98 2
edb9fab 4 25 1
f09360d 9 20 1
6012fed 2 117 1
8dd8c4a 1 59 1

In the build process of modern C++ projects, the compilation
phase generates multiple object files from source code. These
object files are then linked together in the linking phase to create
executable files or libraries. A key feature of incremental builds
is that only the changed files are recompiled. This characteristic
is managed by build systems like Make [32], Ninja [33], and
Bazel [30]. These systems monitor changes in source files and
use dependency analysis to only recompile the affected files.
Figure 1(a) shows an example C project that uses the GNU
Make build system. This project has three targets: foo.o,
bar.o, and hello. In the first round of the build process, all
three targets are built from a clean workspace. If developers
later modify the source code of bar.c, the build system,
recognizing that foo.c has not changed, would issue only
two compilation commands. Importantly, these build systems
are stateful; they retain information from past builds to
optimize subsequent incremental builds.

Conversely, compilers are stateless. In the example
involving bar.c, two separate rounds of compilation (clang
-c bar.c) are entirely independent of each other. This
means that the second round of compilation cannot benefit
from the first. During incremental build process, the changed
files are required to compile from scratch. We analysis the
recent commits for LLVM project in Table I and find that
most functions in the changed files are unchanged. These
unchanged functions can NOT get any benefit from the
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(a) The build system is stateful and avoids unnecessary compilation.
For changed files, the system invokes the compiler to recompile them
from scratch. Since existing compilers are stateless, the two rounds of
compilation for bar.c are entirely independent.

(b) The improvement brought by the stateful compiler. The stateful
compiler records dormant passes during the first compilation. In the
second compilation, if only funcA is changed, the dormant information
of funcB can be used to skip those dormant passes applied on funcB.

Fig. 1: An example C project consisting of three targets: two
object files and one executable file.

incremental build, but to be compiled from scratch, even though
they are not changed. In other words, current incremental
builds operate solely at a coarse-grained level, focusing on
source-file-level modifications rather than adopting a fine-
grained approach that takes into account changes at the level
of individual code sections within files.

Modern compilers often apply hundreds of passes on
programs. This process constitutes a significant portion of
the overall compilation time. However, not all passes result in
modifications to the programs. Passes that leave the programs
unchanged are termed dormant, while those that modify the
programs are called active. For example, if a program has
no loops, any loop-related passes would be dormant, as their
applications would not change the program. We measured
the dormant rate

(
number of dormant passes

total number of passes

)
of multiple LLVM

function passes during the compilation of LUA project [4].
Figure 2(a) displays the dormant rates for different object
files and passes. For instance, the Register Coalescing pass,
which aims to minimize variable-to-variable move operations,
is always active. On the other hand, the Constant Hoisting
pass, applying only to a limited subset of functions containing
expensive constants that can be hoisted, is often dormant.
Despite being dormant, these passes still consume a substantial
amount of computational resources, as shown in Figure 2(b).
We also measure the processes of building LUA, Git, and
CPython using a single process and found that 27.2%, 13.27%,
and 21.02% of the overall build time were spent on dormant
function passes, which do not change the programs. Thus, we
claim that by wisely skipping the dormant passes, we can save

(a) Dormant rate of function passes across different object files.

(b) Execution time taken by dormant and active function passes.

Fig. 2: Analysis of the LUA build process reveals that a
considerable amount of time is spent on dormant passes.

up to approximately 25% of the build time for these projects.
It’s worth noting that predicting which passes will be dormant

is a complex task, influenced by specific characteristics of both
the program and the compiler passes [19], [14], [20].

By making compilers stateful, incremental compilations
can be speeded up by skipping the dormant passes. This is
illustrated in Figure 1(b). A stateful compiler could record all
dormant passes during the first round of compilation and use
this information in the second round to expedite the process.

In summary, existing build systems generally perform
incremental builds at the coarse-grained level of source files.
In contrast, the stateful compiler introduced in this paper
offers additional speedup by enabling fine-grained incremental
builds at the level of code sections (i.e., functions, loops). We
summarize the key contributions of this paper as follows:

• Introducing the concept of the fine-grained incremental
build;

• Describing the workflow that leverages dormant pass
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information to apply fine-grained incremental builds;
• Identifying the prerequisites for converting conventional

stateless compilers into stateful versions;
• Adapting the Clang compiler to a stateful compiler and

assessing its performance on real C/C++ projects.

II. BACKGROUND

For the purposes of discussion, and without loss of generality,
this paper uses terminology and concepts from the LLVM
framework [21]. However, it should be noted that similar
concepts are prevalent in other modern compilers as well.

A. LLVM Hierarchy

The hierarchical structure of LLVM is designed to analyze
and optimize programs at various levels of granularity. The
three most common levels of this hierarchy are modules,
functions, and loops.

A module is essentially a unit of compilation, roughly
equivalent to a source file (e.g., a ‘.cpp‘ file) in C/C++
compilation. Importantly, build systems manage the incremental
build at the module level, which is the coarsest level of
granularity, compared with the following two levels

Functions represent discrete procedures contained within a
module. A function comprises a sequence of instructions, input
arguments, return types, and locally defined variables.

Given the pervasive nature of loops in programming, LLVM
compiler treats loops as distinct entities to enable specialized
optimizations. A loop refers to a repetitive section of code
iteratively executed over a collection of elements. This level of
abstract allows LLVM compiler to perform intricate analyses of
loop characteristics and independent loop optimizations apart
from other code sections.

In LLVM, all these hierarchies are represented using LLVM
Intermediate Representations (IRs).

B. LLVM Passes

A pass acts as a unit of analysis or transformation that
engages with various types of IRs. LLVM passes can be
categorized into two types: analysis passes, which only analyze
the IRs without making any modifications, and transformation
passes, which utilize the analyzed data to modify the IRs. Given
that LLVM PassManagers automatically trigger the necessary
analysis passes for any given transformation pass, this paper
exclusively focuses on transformation passes.

The hierarchy of LLVM passes mirrors that of LLVM IRs,
with module, function, and loop passes being the most prevalent.
Each type of pass operates on its corresponding level of IR.
Moreover, passes operating on a given level of the hierarchy are
independent of IRs at the same or higher levels. For instance, a
function pass applied to one function IR will not be influenced
by any other function IRs or module IRs. This independence
allows for parallel application of passes across different IRs.

In this paper, we particularly emphasize the speed up brought
by the stateful compiler based on the build systems. For this
reason, our stateful compiler records only dormant function
and loop passes. We opt to ignore module passes because, in

the context of incremental builds, it is generally assumed that
the modules under compilation will always contain semantics-
level changes after being filtered by the build systems. This
eliminates the possibility of reusing module-level information
from previous builds.

C. PassManager

The PassManager manages the applications of passes. It
automatically takes care of any analysis passes that are needed
for transformation passes. This makes it simpler for developers,
as they only need to think about the transformation passes
during the design of compilation pipelines.

To extend the conventional stateless compiler to stateful
compiler, we need to update the PassManager to make it
record the dormant information as profiling data, and utilize
the profiling data to check the dormant status and skip the
dormant passes during incremental builds.

III. STATEFUL COMPILER DESIGN

Our design focuses on intra-procedural optimization passes
that rely on intra-procedural analysis. Specifically, the stateful
compiler focuses on optimizing two kinds of intra-procedural
passes: the function passes and loop passes.

A. The Basic Assumption

Before discussing the design of the stateful compiler, we
first establish the fundamental assumption critical to the
validation of the stateful compiler. The assumption is that
the passes are functional; as long as the input to the passes
remains unchanged, the passes’ dormant status will also
remain unchanged. Although most modern compilers meet
this assumption, we have discovered that implementing a fully
valid stateful compiler in practice presents challenges. These
challenges stem from the numerous factors that can influence
the dormant status of compiler passes. To ensure correctness,
the compiler must account for all these factors.

We propose two kinds of equivalence [12] to better assess the
validity of the stateful compiler. Binary Equivalence signifies
that the stateful compiler generates binary files that are exactly
identical to those produced by a conventional compiler. A
less stringent form of equivalence is Semantic Equivalence,
where the stateful compiler generates programs with correct
semantics. For LLVM, all passes in the optimization pipelines
(e.g., loop unroll, LICM, DCE) do not alter the semantics of IRs.
Therefore, an imperfect stateful compiler that erroneously skips
active passes will not breach semantic equivalence. Due to the
complexity of modern compilers, achieving binary equivalence
in all cases is challenging. In Section VII-B, we examine
various scenarios that could compromise binary equivalence
in our current implementation. However, we have found that
violations of binary equivalence are relatively rare in practice. In
our evaluation, the stateful compiler attained binary equivalence
in all tested cases.
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B. The Workflow of the Stateful Compiler

To speed up the incremental build with the stateful compiler,
two kinds of build processes are involved: profiling build
and fine-grained incremental build (Figure 3). The stateful
compiler during profiling build behaves the same as the
conventional stateless compiler, except it also records the
dormant information and stores this information into storage.
The profiling build is only required for the first time. For the
following build processes, they are fine-grained incremental
builds, in which the stateful compiler loads the dormant
information from storage and uses it to skip the dormant
passes to speed up the compilation. In our implementation,
incremental builds do not update the profiling data. The trade-
offs associated with updating profiling data on the fly are
discussed in Section VII-A.

To implement the stateful compiler, we need to solve two
challenges: 1) how to represent the dormant information; and 2)
how to utilize the dormant information during the incremental
build process. We discuss the first challenge in this section, as
the dormant information is a general concept and should be
compiler-independent. In the next section, we introduce several
implementation details for the second challenge.

C. Representing Dormant Information

In general, the dormant information are triples of code
sections, passes, and flags. For example, a triple (LICM, FuncA,
’licm-control-flow-hoisting=false’) means FuncA (code section)
will not be changed by the LICM (pass) when the control flow
hoisting option is turned off (flag). We acknowledge that there
are other factors (discussed in Section VII-B) that can affect
the dormant status. However, in practice, we have found that
these three factors are sufficient for our evaluated cases.

To explicitly represent the dormant information and store
it in storage, the stateful compiler needs to represent each
element in the triple with a data structure. For the pass, the
stateful compiler directly hashes the pass names (text strings)
into scalar values. It applies the same solution to hash the flags
(text strings) into scalar values. This solution requires that the
compiler will not be updated between the profiling build and
the fine-grained incremental build. Since modern compilers
usually have stable versions that do not update frequently,
we believe this requirement is satisfied in most cases. If the
developers upgrade the compiler, they have to erase all existing
dormant information in the storage and re-execute the profiling
build to maintain correctness.

The code sections (e.g., function, loop) are hard to hash.
The compilers generally represent code sections as IRs, which
contain control flow graphs (CFGs) and properties (e.g., return
type, arguments for function IRs). To implement the stateful
compiler, we need to build a hash function that accepts IRs
as input and outputs scalar values. Although there are tree-
structured data hashing solutions [29], [36], [35], [17], they
only hash the topology structures. For the incremental build,
it is quite common that, after the code update, the topology
remains the same, but the dormant status changes. For example,
changing the binary instructions in a function will not change

the topology in the CFG but may affect the dormant status of
passes (e.g., constant folding). Thus, the hash values should
reflect not only the topology structures but also other properties
that may affect the dormant result.

In summary, the ideal hash function for the stateful compiler
should be lightweight and sensitive to all dormant status-
related factors in IRs. To fulfill the requirements of the stateful
compiler, we propose a BFS-based hash solution (Algorithm 1)
to hash two common kinds of IRs, Function IRs and Loop
IRs, to scalars. The algorithm contains several hierarchical
hash functions. The basic hash function maps an instruction
to a scalar value. This basic hash function is used to apply
another higher-level hash function, which maps a block to a
scalar value. Since the instructions in a block have a sequential
order, the hash function continuously updates the hash value
with each instruction, making the order of instructions affects
hash values. The third hash function maps a function IR to a
scalar value. It applies a BFS traverse on the CFG, and the
starting point is the function’s entry block. By strictly pushing
the unvisited blocks into the queue in the order of the operands
in the branch instructions, the output hash values are affected
by the order of the edges. The hash value is initilized with
the function properties before the BFS traverse, to make the
hash value also reflect function properties. We also introduce
the hash function for the loop IRs. Since both loop IRs and
function IRs contain CFGs as the major component, the loop
IR hash function is similar to the function IR hash function.

D. Organizing Dormant Information in Storage

Dormant information consists of triples that represent code
sections, passes, and flags. As modern projects often involve
millions of code sections during compilation, the organization
of this dormant information in storage is a critical design
consideration, which directly impacts the latency involved in
loading, storing, and querying the dormant information.

In our implementation, the stateful compiler organizes
dormant triples on a per-object-file basis. Specifically, all
dormant information triples generated during the compilation
of an object file are grouped together. These triples are then
divided into two categories: one for function passes and another
for loop passes, each stored in separate files. This per-object-
file organization is motivated by the observation that each
compilation command targets a unique object file. As a result,
only the dormant information specific to that particular object
file is needed for its compilation.

IV. IMPLEMENTATION

To demonstrate the feasibility of our approach, we develop a
proof-of-concept stateful compiler based on the LLVM/Clang
framework. The LLVM compiler architecture comprises three
main components: the frontend, the optimization pipeline, and
the CodeGen. The frontend is responsible for parsing the
source code and generating IRs. These IRs undergo passes
in the optimization pipeline, which includes both hardware-
independent and machine-specific optimizations. Finally, the
transformed IRs are used to generate binary code in the
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Fig. 3: The workflow of applying the stateful compiler in the build process. The profiling build records the dormant information
and stores it in storage. The fine-grained incremental build loads the dormant information and utilizes it to skip dormant passes.

CodeGen phase. To transform LLVM compiler into a stateful
version, we introduce modifications to both the frontend and
the optimization pipeline.

A. Frontend

As depicted in Figure 3, the frontend of the stateful compiler
carries out two additional tasks compared to a conventional
stateless compiler. First, during the profiling build, the frontend
creates files for storing dormant information, which are later
accessed by the optimization pipeline. Second, it analyzes user
inputs to extract flags relevant to the optimization pipeline and
forwards this information to the optimization pipeline.

We enhance Clang with a plugin that reads from the
Linux command-line interface (/proc/pid/cmdline) to
gather compilation flags. The plugin filters out irrelevant flags,
retaining only those prefixed with ‘-mllvm,’ as these flags affect
the optimization pipeline. The filtered flags are stored in an
environment variable named OBJECT_FLAGS, subsequently
accessed by the optimization pipeline.

Additionally, the plugin creates empty log files in the file
system to store dormant information. Each object file is associ-
ated with two log files: one for recording dormant information
related to Function Passes and another for Loop Passes. The
paths to these log files are stored in two environment variables:
FUNC_DORMANT_PATH and LOOP_DORMANT_PATH.

B. Optimization Pipeline

In LLVM, all passes in optimization pipelines are man-
aged by PassManagers. The primary modification lies in the
FuncPassManager and LoopPassManager class. The updated
Function PassManager is presented in Algorithm 2. The same
updates is also applied to the LoopPassManager.

1) Profiling Build: The stateful compiler records all dormant
triples in dormant triples and stores this information to the
file system. The storage path FUNC_DORMANT_PATH is set
by the Clang plugin in the frontend.

2) Fine-Grained Incremental Build: The PassManager first
checks whether dormant triples is empty. If it is, the dormant
information is loaded from storage. In LLVM, all Function-
PassManager instances are derived from the same class. By
making dormant triples a class static member, the dormant
information is shared among all FunctionPassManager instances

and initilized (loaded from storage) only once. The loaded
information is then used to check the dormant status during
the execution of passes. For each pass, the FuncPassManager
examines whether the corresponding triple is recorded in the
dormant information. If it is, the pass is directly skipped.
Otherwise, the pass is applied as it would be in a stateless
compiler. To minimize latency, the hash function is invoked
only prior to the optimization pipelines and whenever the
function IRs are modified by passes.

LLVM’s Link Time Optimization (LTO) also utilizes the
PassManager class. Consequently, developers can apply analo-
gous modifications to bypass dormant passes in LTO.

C. Extending Stateless Compilers to Stateful Versions

The preceding discussion on implementation primarily
focuses on the LLVM infrastructure. However, the insights
gained from stateful compilers can also be applied to extend
other conventional stateless compilers. In this section, we
outline the ideal features that existing compilers should possess
to facilitate their transformation into stateful versions.
Separated Analysis and Transformation: Generally, IR passes
can be categorized into two types: analysis passes, which gather
information without modifying the IRs; and transformation
passes, which change the IRs based on the information analyzed.
Analysis passes are inherently dormant but cannot be skipped.
It is essential for stateful compilers to distinguish between
analysis and transformation passes to prevent inadvertently
skipping any analysis phases.
Explicit Dormant Information: An ideal compiler should offer
a straightforward method for reporting whether a pass changes
the IRs. In recent versions of LLVM pass managers, each
pass returns a set of preserved analyses rather than a boolean
value indicating changes, as was the case in legacy LLVM
PassManagers. Although this new design avoids re-executing
redundant analyses, it complicates the task of identifying
dormant passes in the context of stateful compilers.
Functional Passes: Passes should solely depend on their inputs
(code sections and flags) and be unaffected by external factors.
In terms of dormant information, this implies that the dormant
status of a pass should remain constant as long as its inputs
are unchanged. Moreover, passes should be free of side effects.
If a pass alters analysis results without changing code sections
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Algorithm 1: Hash functions for mapping LLVM IRs to scalars.
Input: VHASH: The normal scalar-to-scalar hash function

1: function HASHINST(inst)
2: hash val← VHASH(0xdeadbeef, inst.opcode)
3: for operand ∈ inst do
4: if operand is instruction then
5: hashed inst← HASHINST(operand)
6: hash val← VHASH(hash val, hashed inst)
7: else
8: hash val← VHASH(hash val, operand.str)
9: end if

10: end for
11: return hash val
12: end function
13: function HASHBLOCK(block)
14: hash val← 0xdeadbeef
15: for inst ∈ block do
16: hash val← VHASH(hash val, HASHINST(inst))
17: end for
18: return hash val
19: end function
20: function HASHFUNCTION(func)
21: hash val← 0xdeadbeef
22: for arg ∈ func.args do
23: hash val← VHASH(hash val, arg.type)
24: end for
25: hash val← VHASH(hash val, func.ret type)
26: visited blocks← ∅
27: queue← initialize queue with func.entry
28: while queue is not empty do
29: current block← queue.dequeue()
30: if current block ∈ visited blocks then
31: continue
32: end if
33: visited blocks← visited blocks ∪ current block
34: hashed block← HASHBLOCK(current block)
35: hash val← VHASH(hash val, hashed block)
36: queue.push(current block.successors())
37: end while
38: return hash val
39: end function
40: function HASHLOOP(loop)
41: hash val← 0xdeadbeef
42: visited blocks← ∅
43: queue← initialize queue with loop.header
44: while queue is not empty do
45: current block← queue.dequeue()
46: if current block ∈ visited blocks then
47: continue
48: end if
49: if current block /∈ loop.blocks then
50: continue
51: end if
52: visited blocks← visited blocks ∪ current block
53: hashed block← HASHBLOCK(current block)
54: hash val← VHASH(hash val, hashed block)
55: queue.push(current block.successors())
56: end while
57: return hash val
58: end function

Algorithm 2: The updated function in LLVM FuncPassManager.

1: function RUNONFUNCTION(Func)
2: build type ← os.env(”STATEFUL MODE”)
3: flags ← os.env(”OBJECT FLAGS”)
4: dormant path ← os.env(”FUNC DORMANT PATH”)
5: changed ← False
6: hashed func ← hash function(Func)
7: static dormant triples ← []
8: if build type = ”fine grained inc build” then
9: if dormant triples is empty then

10: dormant triples ← load(dormant path)
11: end if
12: end if
13: for pass ∈ passes do
14: if build type = ”stateless” then
15: changed ← changed ∨ pass(Func)
16: else if build type = ”profiling build” then
17: local changed ← pass(Func)
18: changed ← changed ∨ local changed
19: if not local changed then
20: dormant triples.append(

(hashed func, pass.name, flags))
21: else
22: hashed func ← hash function(Func)
23: end if
24: else if build type = ”fine grained inc build” then
25: if (hashed func, pass.name, flags)

∈ dormant triples then
26: continue
27: else
28: local changed ← pass(Func)
29: changed ← changed ∨ local changed
30: if local changed then
31: hashed func ← hash function(Func)
32: end if
33: end if
34: end if
35: end for
36: if build type = ”profiling build” then
37: store(dormant triples, dormant path)
38: end if
39: return changed
40: end function

in a way that could impact other passes, it possesses a side
effect and thus cannot be considered dormant and skipped.

V. EVALUATION

A. Evaluation Setup

To mimic the real-world software development process, we
perform incremental builds by applying real git commits to
the codebase. Specifically, for a given project, we first check
it out to an earlier commit and execute a profiling build on
the source code. Subsequently, we apply later git commits and
carry out the incremental build process.

We choose six popular C++ applications for our evaluation.
LUA [4] is a lightweight, embeddable scripting language and
currently leads in the realm of gaming scripts. Git [28] is
a distributed version control system extensively employed
for tracking changes in source code during software devel-
opment. CPython [2] serves as the reference implementation
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of Python, offering a high-performance interpreter along with
a comprehensive standard library. PostgreSQL [6] is a robust
open-source relational database management system, providing
reliable and scalable solutions for structured data storage
and retrieval. OpenCV [7] is an open-source computer vision
library featuring a comprehensive set of tools and algorithms
for image and video processing. Lastly, LLVM [21] is a
compiler infrastructure project that facilitates the development
of compilers, programming languages, and associated tools.
The specifics of these projects are detailed in Table II.

To implement our stateful compiler, we modify Clang-14.
We employ GNU Make [32] as the build system, as it serves
as the default build system for these selected projects. All
experiments are conducted on a server equipped with 64 Intel
CPUs (Intel Xeon Gold 6226R) and 400 GB of memory.

TABLE II: PROJECTS UTILIZED FOR EVALUATION.

Name Latest Commit Make -j Build Time (sec)
Number of
C++ Files

LUA 64431851 1 5.931 40
Git 9748a682 8 8.243 565
CPython e1d45b8e 8 12.07 357
Postgres 29cf61ad 32 38.905 1458
OpenCV 8839bd57 32 160.365 2384
LLVM d954d975 64 312 38855

B. Speedup Evaluation

We first evaluate the speedup achieved by the stateful
compiler. The formula for calculating speedup is given by:
100%× baseline time−stateful time

baseline time .
We measure two types of time. The compilation time refers

to the total time taken by the compiler, assuming all targets
are compiled with a single CPU processor. This time metric
directly reflects the speedup achieved by the stateful compiler.
We also consider the End-to-End time, which is the total time
taken to execute the ’make’ command. This includes the time
spent on non-compilation tasks, such as linking and folder
management. For all projects except LUA, we execute the
build process using multiple processors. While these factors
may introduce bias when illustrating the speedup afforded
by the stateful compiler, we include the End-to-End time to
demonstrate that the stateful compiler does, in fact, improve
the overall elapsed time.

We evaluate the speedup on these four relatively lightweight
projects by applying the 20 most recent commits for incre-
mental builds. We display the distribution of speedup across
these 20 build processes for each project and each optimization
pipeline (O1, O2, and O3) in Figure 4. Commits that do not
modify C/C++ files are excluded from this evaluation. On
average, across all commits and projects, the stateful compiler
achieves a 6.72% speedup in end-to-end build time compared
to the stateless compiler (Clang-14).

The speedup demonstrates considerable variability across
projects, optimization pipelines, and individual commits. This
variability is attributed to several factors. First, the effectiveness
of the stateful compiler is contingent on the number of dormant
passes it can skip, a quantity that varies significantly depending

on the project and the chosen optimization pipeline. Second,
within the same project, different commits necessitate varying
degrees of recompilation. For instance, commits involving
changes to header files (.h) generally trigger more recompila-
tion than those solely modifying source files (.cpp).

We use LUA as a case study, since it can be built using a
single processor. We measure the execution time for all function
passes and calculate the dormant ratio (Figure 5). Establishing
a formulaic relationship between the dormant rate and Function
Pass speedup is challenging because it is contingent on specific
passes and functions. However, we observe that, generally,
targets with a high dormant rate tend to experience significant
speedup when compiled with the stateful compiler.

The speedup achieved in LUA, Git, and CPython falls short
of the upper bound speedup discussed in Section I, primarily for
two reasons. First, stateful compilers incur additional overhead
in checking the dormant status. Second, there are false positive
instances where the stateful compiler unnecessarily applies
dormant passes. Some code modifications do not change the
dormant status of passes but change the IR hash values, thus
precluding the use of dormant data. False positives also occur
when code modifications make active passes dormant.

C. Overhead

1) Profiling Build: Compared to conventional stateless
compilers, the stateful compiler necessitates an initial profiling
build to record dormant information and store it in storage.
The end-to-end execution time for the profiling build across
five projects is depicted in Figure 6. The build time for LUA
is less than one second and is therefore not shown in the
figure. The execution time is measured as the median of seven
rounds of execution. Across all projects, the end-to-end build
time remains consistent between the normal build and the
profiling build. The most significant difference is observed in
LLVM, where the normal build takes 313.46 seconds, while the
profiling build requires 315.78 seconds. This results in a mere
0.73% difference. We also measure the size of the dormant
information for six projects, as shown in Table III. Since all
dormant information is stored in storage, the storage overhead
is negligible for modern computers.

TABLE III: SIZES OF DORMANT INFORMATION.

LUA CPython Git Postgres OpenCV LLVM
Size
(MB) 0.72 10.75 9.62 18.92 151.24 259.89

2) Fine-Grained Incremental Build: Although the stateful
compiler can skip dormant passes, it also introduces overhead
for loading dormant information, hashing the IRs, and checking
the dormant status. All these factors are related to the program:
the overhead for loading dormant information and checking
the dormant status depends on the number of dormant triples
recorded during the profiling build. Meanwhile, the overhead
for hashing the IRs depends on the size of the IRs.

We profile the compilation time in four projects and measure
the total amount of time used for executing the passes,
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(a) LUA

(b) Cpython

(c) Git

(d) Postgres

Fig. 4: The compilation/end2end speedup brought by the
stateful compiler. Each project is evaluated 20 times by
sequentially applying the 20 most recent commits.

Fig. 5: Correlation between FunctionPass execution speedup
and FunctionPass dormant rate in the LUA project. Higher
dormant rates generally result in greater speedup when using
the stateful compiler.

Fig. 6: The end-to-end execution time required to build the
projects using 64 parallel processes. The profiling build does
not exhibit a slowdown when compared to the Clang build
process. Execution times are measured as the median of seven
rounds of executions.

loading dormant information, hashing the IRs, and checking
the dormant status (Figure 7). In all projects, more than 90%
of the total execution time is spent on executing the passes.
When it comes to the overhead brought by the stateful compiler,
checking for dormant status costs the most, making up 77%
of the total overhead. Hashing also contributes to 20% of the
total overhead. As the profiling data are loaded only once, the
loading overhead is negligible.

D. Stateful Compiler + CCache

CCache [31] is a popular solution for speeding up incre-
mental builds. It maintains a cache in the file system to store
executed C/C++ commands and the generated object files.
CCache can be regarded as a wrapper of the compilers. For
any upcoming call to the compiler, CCache first checks whether
the command has been executed before and, if so, whether
the input files have semantics modifications. If CCache finds
that the upcoming call would generate the same object files
as a previous call (CCache hit), CCache directly loads the
corresponding object files from the cache without invoking the
real compiler. Otherwise, CCache invokes the real compiler to
generate the object files and stores the generated files into the
cache. The hit/miss rate of CCache is the most critical metric
for measuring its effectiveness. CCache is included in the build
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Fig. 7: Profiling data of compilation time during the fine-
grained incremental build process. The overhead introduced by
the stateful compiler is relatively small compared to the time
spent on executing passes. The pass execution time accounts
from 91.98% to 93.95% of the total time in the four projects.

processes of some well-known projects, such as LLVM [21],
Linux kernel [3], and Mozilla Firefox [5].

The stateful compiler works orthogonally with CCache.
During an incremental build, when multiple source files are
updated, CCache can filter out the compilation of those files
that have not undergone semantic changes. For the remaining
changed files, the stateful compiler is used for compilation.

In this section, we integrate CCache with the stateful
compiler to measure the improvement on two projects with
large code bases: OpenCV [7] and LLVM [21]. The end-to-end
time for both projects includes both compilation and linking
time. To mitigate the bias introduced by the linking time,
we adjust the configuration settings to reduce the amount of
linking. For example, we disable the LLVM_BUILD_TOOLS
option in LLVM’s CMake files to reduce the time spent on
linking for generating executable files. Additionally, instead
of using sequential commits, we test the incremental builds
using commits at intervals for two reasons: first, some commits
do not contain meaningful modifications, such as those fixing
typos in comments, which would not trigger any recompilation;
second, by gathering modifications from multiple commits, we
can increase the number of files changed in the incremental
build, thereby increasing the time spent on compilation.

As shown in Figure 8, using the stateful compiler in addition
to CCache further accelerates incremental builds. The extent of
the benefit provided by the stateful compiler varies across
commits. We find that there is no consistent relationship
between the CCache miss rate and the speedup achieved
through the use of the stateful compiler. We discuss these
four cases in more detail below.
High CCache miss rate and High stateful compiler
speedup: In Figure 8(a), for the commits between 60a6a
and a3e48, the incremental build experiences a high CCache
miss rate (96.38%) but also benefits significantly from the
stateful compiler (3.96%). This is attributable to a git commit

(a) LLVM

(b) OpenCV

Fig. 8: The speedup achieved by integrating the stateful
compiler with CCache, compared to using CCache alone.
Generally, the integration of the stateful compiler with CCache
further accelerates the incremental build process.

(23ed601) that merely changes a typo in a function name (from
explicitly convertable to explicitly convertible) without altering
the functionality of any code. However, this commit modifies
the source code of llvm/ADT/iterator_range.h, a
header file used by almost all other files. For example, it is
referenced by LLVM’s String and BFS visiting implementations.
Consequently, this causes a substantial regression in the
CCache hit rate. Although these files must be recompiled,
the modification doesn’t affect the hash value of the original
functions (as the stateful compiler doesn’t hash function names).
Thus, these compilations benefit from the stateful compiler.
High CCache miss rate and Low stateful compiler speedup:
For the commits between c97c2 and 1db14 in OpenCV, a large
amount of code requires recompilation (69.57% CCache miss
rate). The changes in this code are so significant that they
make it difficult for the stateful compiler to utilize the profiling
data effectively. In this scenario, the stateful compiler behaves
much like a conventional stateless compiler and achieves only
a negligible speedup (0.67%).
Low CCache miss rate and High stateful compiler speedup:
In the OpenCV project, between commits bf06b and 64be9,
there are only minor modifications to the source code, resulting
in just 12 targets requiring recompilation. As a result, the
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CCache miss rate is as low as 0.73%. Despite this, the overhead
to rebuild these 12 targets is quite large, involving files with
substantial size (e.g., opencl kernel dnn.cpp contains around
5.5k lines). Since most of the source code in these files remains
unchanged, the stateful compiler is able to accelerate the
compilation process for these large files, leading to a 9.26%
speedup in the end-to-end build time.
Low CCache miss rate and Low stateful compiler speedup:
In the LLVM project, the commits between db32d and 899c8
introduce only minor changes to the C++ source code. As a
result, the CCache miss rate is low at 0.87%, and only 5 targets
require recompilation. However, there are 22 linking commands
following the compilation. Consequently, the majority of the
build time is spent on linking rather than compiling. Therefore,
the stateful compiler has a minimal impact on the end-to-end
build time, achieving only a 0.63% speedup.

In summary, the relationship between the CCache miss rate
and the speedup achieved by the stateful compiler largely
depends on the overhead associated with recompiling the
missed targets, as well as the overhead of other parts of the
build process (e.g., the linking process). However, generally
speaking, employing the stateful compiler alongside CCache
can consistently benefit the incremental build process. On
average, compared to using CCache alone, the combination of
CCache and the stateful compiler yields a 3.50% and 3.45%
speedup for OpenCV and LLVM, respectively.

VI. RELATED WORKS

Incremental build is a common practice in software develop-
ment, where similar code bases are frequently recompiled
with different patches. Therefore, leveraging build history
to accelerate incremental building is crucial. Instrumentation
represents another scenario that stands to benefit from in-
cremental building. Odin [34] is a framework that performs
on-the-fly instrumentation, targeting only the code sections
of interest for instrumentation. To expedite the process of
incremental compilation when adding instrumented instructions,
Odin subdivides the program into several smaller modules. As
a result, rather than recompiling the entire program, only the
affected modules need to be recompiled.

A. Build System

Researchers have developed various build systems to achieve
high-performance incremental builds. These systems aim to
avoid the compilation of unchanged objects through dependency
analysis. GNU Make [32], one of the earliest and most
widely known build systems, uses a declarative approach
where users define dependencies and actions in a Makefile.
Make tracks the timestamp of each file to identify those
that have not been updated, thus avoiding their recompilation.
While Make is simple and widely supported, its dependency-
tracking mechanism can lead to unnecessary recompilation
and longer build times for complex projects. Ninja [33] is
another popular build system. Compared with Make, Ninja
offers higher performance and better scalability in dependency
analysis. It maintains an explicit dependencies graph, thereby

avoiding redundant dependency analyses during incremental
builds. Bazel [30] focuses on distributed build processes. It
employs remote caching to deliver fast and reproducible builds,
making it well-suited for complex projects on cloud servers.

For all build systems, the most critical task is to analyze
dependencies among compilation targets. OMake [13] extends
the Make build system to enhance its dependency-tracking
mechanism. Pluto [11] provides a cooperative environment of
builders that inform the build system the required and produced
files during runtime, thus enables dynamic dependency analysis
that can be utilized for making incremental build dynamically.
[18] builds the dynamical dependency analysis that accepts
file changes and transitively detects the affected build tasks
for execution/re-execution during runtime. Shake [23] provides
more flexible dependency descriptions, capable of handling
dependencies involving files generated at build time. Riker [8]
is a build system that automatically discovers dependencies to
make the build process both correct and efficient.

B. Compiler Wrapper

Most build systems are designed to accommodate multiple
frontend languages and therefore do not perform specific
analyses for source code semantics. Given the popularity of
C/C++ in software projects, there are several projects aimed
at addressing the incremental compilation problem specifically
for C/C++ projects. CCache [31] serves as a compiler wrapper
for C/C++. Before invoking the real compiler (e.g., gcc, clang),
the wrapper checks whether the flags and input files have
previously been built. If they have, the wrapper fetches the
stored output files and returns them, avoiding the need to call
the real compiler. Clcache [24] is a lightweight Python script
designed for Microsoft Visual Studio that implements a similar
mechanism. Distcc [10] takes this approach a step further by
distributing the mechanism, allowing for the sharing of cached
object files among users.

These projects typically use a hash function (e.g., checksum)
to treat C/C++ source code as plain text for the purpose of
detecting modifications. This approach does not utilize the
semantic information in the programming languages. ABC [37]
employs def/use analysis to detect the usage of header files.
Consequently, if a function in a header file undergoes a change,
only the files that actually make use of the changed function
need to be recompiled, not all files that import the header.
CHash [9] proposes an alternative hash function based on AST
analysis, ensuring that non-semantic modifications [12] (e.g.,
code formatting) do not alter the hash value.

These works apply coarse-grained incremental build analy-
sis at the source-file level, which does not utilize information
at the function or loop levels. Montana [16], [27] proposes
splitting large code files into several smaller ones to expedite
the incremental build process. This approach can be considered
fine-grained, where modifications at the function level are
translated to the source-file level, assuming each function is
contained in its own file.

These solutions concentrate on the semantics of C++ and
maintain independence from specific compilers. In contrast,
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our approach necessitates modifications to the compiler. By
delving into the compiler, it offers more opportunities for
optimization. For example, if a user adds dummy instructions
(e.g., ‘a = a‘) within a function, none of the previous projects
can recompile the corresponding file by leveraging information
from a previous build. Conversely, our solution can expedite
the compilation process: after the dummy instructions are
optimized out during compilation (e.g., dead code elimination),
the stateful compiler can recognize that the same function has
been compiled before and leverage previous building results.

Zapcc [1] is another stateful compiler. Zapcc treats the
compiler and compilation process as a client-server architecture.
Thus, the compiler is always an active process and can
use memory to record the history of previous compilations.
Compared with our solution, Zapcc utilizes memory instead of
storage to keep cache data, which can potentially yield higher
performance. Zapcc is an ambitious project and represents a
heavily modified version of Clang, which poses challenges in
keeping pace with the latest LLVM versions. As indicated on its
GitHub project, Zapcc’s last merge with LLVM 6 occurred in
2018. On the other hand, our approach is lightweight, involving
only updates to the LLVM PassManager and the addition
of a new plugin for Clang. This allows for more seamless
integration with the latest LLVM versions. Additionally, while
Zapcc focuses on frontend optimization to reduce the overhead
of template instantiations and parsing headers, our solution is
centered on middle-end optimization.

PASH-JIT [15] is a compiler that parallelizes POSIX script
fragments. It utilizes a stateful compilation server to detect
independent, parallelizable shell-script sections during runtime.

VII. DISCUSSION

A. The Decay of Dormant Profiling Data

In the current design, dormant profiling data is not up-
dated during the incremental build process. Consequently, as
development progresses, the dormant profiling data decays,
leading to the stateful compiler gaining fewer advantages as
it detects fewer dormant passes. While it is feasible to update
the dormant profiling data on-the-fly during the incremental
build process, the size of the dormant profiling data would
increase monotonically with each build, thereby slowing down
the query time for the dormant status. To maintain a stable
size of the dormant data, the stateful compiler also needs to
discard any dormant data associated with IRs that have been
modified, since this data will no longer be utilized. However,
this additional step introduces extra overhead that can decelerate
the compilation process. A potential solution could involve
enabling the stateful compiler to track the hit rate of dormant
data and to automatically regenerate profiling data when the
hit rate falls below a certain threshold.

B. The Validation of Dormant Profiling Data

In our implementation, the compiler records IRs, flags, and
pass names as dormant profiling data. However, given the
complexity of modern compilers, there are additional factors
that also affect the dormant status.

Optimization Pipeline: The optimization pipelines pass
flags to passes implicitly. For instance, in LLVM, the
LoopUnswitch pass is applied with both O2 and O3
optimization levels. However, the NonTrivial flag is enabled
only at the O3 level.

PGO Files: The PGO files supply metadata that influences
the behavior of passes. For instance, these files offer insights
into which code sections are ’hot’ or ’cold’, information that
can significantly affect pass decisions.

Outer-Level IRs: LLVM permits an IR pass to be influenced
by outer-level IR analyses. For example, certain function passes
depend on module-level analysis. Consider a module containing
two functions, A and B. Altering function B may affect the
results of the module analysis, which could, in turn, change the
dormant status when the function pass is applied to unchanged
function A, since it relies on the module analysis outcome.

The most straightforward way to address these challenges
is to record all relevant factors in the dormant profiling data.
However, considering the complexity of modern compilers,
detecting and recording all factors involves considerable effort.

A trade-off between performance and engineering effort
is to exclude passes that involve PGO or higher-level IR
analysis from the dormant profiling data. Consequently, during
incremental builds, the compiler will not find any related
dormant information for these passes and will apply them
as traditional compilers do.

It is worth noting that as long as compiler passes do not
change the semantics of programs, the omission of these
factors in the profiling data results only in the violation of binary
equivalence, while still maintaining semantic equivalence.

VIII. CONCLUSION

To accelerate the incremental builds, developers employ
build systems to avoid recompiling unchanged files. For the
changed files, build systems invoke compilers to generate new
object files from scratch. This approach, which operates at the
source-file level, is referred to as coarse-grained incremental
build. In this paper, we introduce a stateful compiler designed
to further expedite the incremental builds. Specifically, the
stateful compiler retains dormant information and utilizes
it to skip dormant passes during incremental builds. This
approach facilitates a fine-grained incremental build process
that leverages previous information at the code-section level.

We implement our approach using the LLVM compiler and
evaluated its performance on real C++ projects. Our evaluation
shows that the stateful compiler can improve the end-to-end
incremental build process by 6.72%. Moreover, we integrate
the stateful compiler with a state-of-the-art incremental build
solution, CCache, and test it on two large C++ codebases. The
results indicate that the stateful compiler can further accelerate
the build process already optimized by CCache.
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