
Exponentially Expanding the Phase-Ordering Search
Space via Dormant Information

Ruobing Han
Georgia Institute of Technology

USA

hanruobing@gatech.edu

Hyesoon Kim
Georgia Institute of Technology

USA

hyesoon@cc.gatech.edu

Abstract

Applying compilation transformations in optimal sequences

can signi�cantly improve program speed and reduce code

size. However, �nding these optimal sequences—a problem

known as the phase-ordering problem—remains a long-standing

challenge. Speci�cally, modern compilers o�er hundreds of

available transformations, making the search space too large

to explore e�ciently within a reasonable timeframe. Existing

solutions address this problem by grouping transformations

into short sequences based on prior knowledge from human

experts, and then searching for optimal orders among these

sequences. Such pruning methods are aggressive, potentially

excluding optimal solutions from the search space. Addition-

ally, they rely on prior knowledge and lack scalability when

applied to new transformations.

In this paper, we propose a more conservative pruning

approach. The insight of this new approach is to capture the

dormant information and utilize it to guide the search pro-

cess. By excluding dormant transformations, this approach

signi�cantly prunes the search space while retaining the opti-

mal solutions. Moreover, it does not rely on any prior human

knowledge, making it scalable to new transformations.

To demonstrate the e�cacy of the conservative approach,

we integrate it with a classical Reinforcement Learningmodel,

which was previously used with aggressive pruning meth-

ods. Our solution, named FlexPO, is capable of exploring a

search space exponentially larger than those considered in

existing solutions. Experimental results show that FlexPO

generates programs that are 12% faster or 17.6% smaller than

the programs produced by modern compilers.

CCS Concepts: • Software and its engineering → Com-

pilers.

Keywords: compiler, phase ordering, reinforcement learning

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for pro�t or commercial advantage and that copies

bear this notice and the full citation on the �rst page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0507-6/24/03

h�ps://doi.org/10.1145/3640537.3641582

ACM Reference Format:

Ruobing Han and Hyesoon Kim. 2024. Exponentially Expanding the

Phase-Ordering Search Space via Dormant Information. In Proceed-

ings of the 33rd ACM SIGPLAN International Conference on Compiler

Construction (CC ’24), March 2–3, 2024, Edinburgh, United King-

dom. ACM, New York, NY, USA, 12 pages. h�ps://doi.org/10.1145/

3640537.3641582

1 Introduction

Modern compilers o�er hundreds of compilation transfor-

mations to modify programs. Extensive research [2, 3, 26, 28]

has shown that strategically applying these transformations

in an optimal sequence can signi�cantly enhance program

runtime, with improvements ranging from 2.4% to 60.37%.

Most modern compilers o�er prede�ned transformation

sequences (e.g., O3, Oz, Os), which are based on empirical

evidence. However, several studies [3, 17, 22, 29] indicate that

applying a uniform transformation sequence across a diverse

range of programs often leads to suboptimal performance.

This suggests that these sequences are overly generalized

and lack the speci�city needed to achieve the best possible

performance for each unique program.

The phase-ordering problem, which involves selecting and

applying transformations in optimal sequences, remains an

unresolved challenge. This complexity stems from the vast

and intricate search space, expanding exponentially with

the number of transformations involved. For # available

transformations, the search space encompasses # ! potential

sequences when applying ! transformations. Furthermore,

predicting sequence outcomes is di�cult due to the complex

interactions among transformations [17, 37].

Some researchers [3, 22, 29] propose a pruning mechanism

to narrow the search space. This method clusters transfor-

mations into short sequences based on prior human knowl-

edge, then applies search algorithms to select and sequence

these short sequences. This strategy e�ectively shrinks the

search space when compared to the ordering of individual

transformations, facilitating the discovery of satisfactory so-

lutions within a feasible timeframe. For instance, given #

transformations and a target sequence length !, by grouping

� transformations together, we form #
�
sequences. Conse-

quently, we only need to choose !
�
of these sequences to

construct the �nal solution. Hence, the revised search space

is
(

#
�

)
!

� , a signi�cant reduction from the original # ! .

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

250

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3090-3951
https://orcid.org/0000-0002-6061-7825
https://doi.org/10.1145/3640537.3641582
https://doi.org/10.1145/3640537.3641582
https://doi.org/10.1145/3640537.3641582

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Ruobing Han and Hyesoon Kim

Nevertheless, this approach has two limitations. First, the

pruning mechanism is aggressive, potentially excluding

optimal solutions from the search space. Second, the mech-

anism relies on human experts to form transformation se-

quences, making it less scalable for new transformations.

We refer to this mechanism as aggressive pruning.

In this paper, we propose a new pruning mechanism. This

mechanism detects transformations that will not change the

program (a.k.a. dormant transformations). It then guides

the search process to focus solely on transformations that

are likely to change the program (a.k.a. active transforma-

tions). Compared to the aggressive pruning solution, the new

mechanism is conservative, as it only prunes non-optimal

sequences that contain dormant transformations from the

search space. Furthermore, it o�ers scalability for new trans-

formations, since it does not rely on prior knowledge of the

transformations.

The proposed conservative pruning can replace the ex-

isting aggressive pruning mechanism. Speci�cally, we in-

troduce FlexPO, a framework that integrates conservative

pruning with a classical RL model that has been used along

with aggressive pruning mechanisms [3, 22, 29]. With the

new pruning approach, FlexPO can explore a search space

that is exponentially larger than those of other solutions, as

shown in Figure 1.

Figure 1. FlexPO supports a search space that is exponen-

tially larger than existing solutions.

The contributions of our paper are listed below:

• Highlight the importance of utilizing dormant infor-

mation, which has been long overlooked by phase-

ordering solutions.

• Propose the utilization of a ML model to ascertain the

active/dormant status of transformations.

• Integrate the conservative pruning with a RL model

and evaluate the e�ectiveness of the search process.

2 Background

2.1 Phase Ordering

As summarized in [11], the best compilation sequence

depends on the following factors: source code, target ma-

chine, available transformations, and optimization targets

(e.g., code size and runtime performance). For modern com-

pilers that contain hundreds of transformations, the search

space is too large to be fully explored. Additionally, the in-

teraction between transformations makes the problem more

di�cult, and exchanging the order of two transformations

sometimes generates di�erent outputs. As shown in Figure 2,

in the upper part, both loop-invariant code motion (LICM)

and loop unroll change the program. However, in the lower

part, after the loop unroll transformation, there is no loop

in the program. Thus, applying LICM after loop unroll does

not change the program.

Figure 2. Applying the same transformations in di�erent

orders results in varied outcomes.

2.2 Reinforcement Learning Solution

Reinforcement Learning (RL) has emerged as a promising

approach to solving the phase-ordering problem. In essence,

RL involves constructing an agent that executes actions

in response to observations to maximize the cumulative

reward within a speci�ed environment. Key concepts in

RL include:

• Agent: The agent should be a model that accepts obser-

vation as input and outputs an action that is expected

to achieve the maximum total rewards.

• Reward: The metrics to evaluate whether or not the

actions selected by the agent are good. For the phase-

ordering problem, the reward could be a decrease in

code size or a decrease in runtime.

• Action: The actions could be applied to change the

environment. For the phase-ordering problem, the ac-

tions are compilation transformations.

• Environment: The environment is the object that is

changed by the actions. It also generates observations

fed to the agent. For the phase-ordering problem, the

environment is the input program.

251

Exponentially Expanding the Phase-Ordering Search Space via Dormant Information CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

• Observation: The features of the environment, which

serve as the input for the agent. The agent relies on

these observations to select actions.

The traditional RL process, when applied to the phase-

ordering problem, is illustrated in Figure 3. This process

involves multiple iterations, during each of which the agent

observes the intermediate representation (IR), selects and

applies a transformation to the IR, and then evaluates the

e�ectiveness of the applied transformation. The methodolo-

gies presented in [3, 22, 29] adopt similar RL processes to

solve the phase-ordering problem.

Figure 3. Work�ow of the classical RL process in solving

the phase-ordering problem.

3 Dormant History

A transformation is termed ’dormant’ when its application

does not change the program; otherwise, it is referred to as

’active.’ For instance, in the lower part of Figure 2, the loop

unroll is active, whereas LICM is dormant.

In this paper, we introduce a new term to address the

phase-ordering problem: dormant history. This term denotes

a record of the active/dormant status for each applied trans-

formation. Figure 4 provides an illustration of dormant his-

tory. When an identical sequence of �ve transformations

is applied to three di�erent programs, it results in varying

dormant histories for each program.

Figure 4. Dormant histories of the same sequence across

three di�erent programs.

3.1 The Importance of Dormant History

The dormant history can reveal signi�cant features of the

programs. For instance, in Figure 4, the dormant statuses

for both applied loop transformations (Loop Simplify and

Loop Unrolling) in the �rst two programs suggests that these

programs likely contain no loop structures. Furthermore, the

activation of the Constant Folding typically followed by the

activation of Dead Code Elimination. This indicates that

programs, with the application of Constant Folding, often

contain dead code that can be removed. Essentially, dormant

history provides insight into two pivotal aspects: the features

of the programs being transformed and the likelihood of

subsequent transformations being active. Both elements are

crucial for the phase-ordering problem. To the best of our

knowledge, this is the �rst attempt to leverage dormant

history for solving the phase-ordering problem.

Capturing the dormant history is straightforward. As

shown in Figure 3, within the search process, a transforma-

tions is applied in each iteration. Recording whether these

transformations are dormant incurs only a negligible cost.

3.2 Utilizing Dormant History

Given that dormant history re�ects essential character-

istics of programs, in this section, we propose using it to

apply conservative pruning. The core idea is to construct

an ML model (activation predictor) that takes dormant

history as input and predicts the likelihood of subsequent

transformations being active.

Figure 5 illustrates an example. The input (dormant his-

tory) is represented as a vector with the length same as the

number of transformations. Each element in the vector can

be 1, 0, or −1, indicating whether the corresponding transfor-

mation has been applied and, if so, whether it was active. For

example, the �rst element of the input vector is 1, signify-

ing that the corresponding transformation (Loop Unrolling)

was applied and modi�ed the program (active). The second

element is 0, indicating that Dead Code Elimination has not

been applied. The third element is −1, suggesting that the in-

line transformation was applied but had no e�ect (dormant).

The output is also a vector, where each element represents

the probability that the corresponding transformation will

be active if applied subsequently.

In the example shown, the predictor notes that the inline

transformation has been applied and it was dormant, making

it unlikely to have an e�ect if applied again. Consequently,

its probability (the third element in the output vector) is

close to zero. The predicted active probabilities are crucial in

the phase-ordering search process, as they guide the search

process to explore transformations more likely to be active.

4 FlexPO

To illustrate the signi�cance of utilizing dormant history

in addressing the phase-ordering problem, we incorporate

252

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Ruobing Han and Hyesoon Kim

Figure 5. The activation predictor predicts the probabil-

ity of whether transformations are active, by observing the

dormant history of the applied transformations. Each item

represents a value in the range [0,1], indicating the likeli-

hood of the corresponding transformation being active.

the activation predictor into a conventional RL model. We

intentionally employ a RL model that is identical or similar

to those used in other studies [3, 15, 22, 29], to highlight the

enhancements attributed to the activation predictor and to

isolate the impact from the RL algorithms themselves.

The work�ow of FlexPO, as depicted in Figure 3, begins

with compiling the input program into LLVM IR without ap-

plying any transformations, producing what we call A0F_�'.

FlexPO conducts a search for optimal transformation se-

quences on A0F_�' over # episodes, with each episode com-

prising ! iterations. It is important to note that # and ! are

hyperparameters, which are set empirically. At the begin-

ning of each episode, the current LLVM IR (2DAA_�') is set

to the initial A0F_�'. FlexPO then carries out ! iterations

sequentially. At the start of each iteration, 2DAA_�', along

with the dormant history, is provided to the RL agent as

an observation. The agent analyzes the observation and se-

lects a transformation C . The agent also outputs an estimated

value, denoted as 4BC8<0C43_A4F0A3 , which represents the

expected total rewards obtainable by applying the selected

transformation. This estimated value is recorded for the pur-

pose of updating the agent. Subsequently, FlexPO applies

the chosen transformation C to 2DAA_�', resulting in a new

LLVM IR termed =4F_�'. FlexPO then compiles =4F_�' and

compares its runtime performance or code size to that of

2DAA_�'. Any improvements are recorded as rewards for up-

dating the RL agent. After completing an iteration, 2DAA_�'

is set to =4F_�'. Once all ! iterations are �nished, FlexPO

updates the RL agent using the recorded data. For RL model

updating, FlexPO applies the generic Proximal Policy Opti-

mization algorithm [32].

The details of FlexPO are outlined as follows:

Observation: The LLVM IR in FlexPO is regarded as a string,

which cannot be directly processed by DNNs. Thus, FlexPO

utilizes the method proposed in AutoPhase [18] to convert an

LLVM IR string into a vector with length 56. Each element in

the vector represents a compilation feature (e.g., the number

of branch instructions, the number of critical edges, and the

number of binary operations with a constant operand). All

features are static and can be extracted directly from the IRs,

eliminating the need for compilation and execution. Other

methods exist for parsing LLVM IRs, which we discuss in

Section 6. We opted for AutoPhase due to its lightweight

and straightforward nature. Furthermore, our evaluations

show that AutoPhase su�ciently enables FlexPO to identify

sequences that surpass LLVM O3 and Oz pipelines.

Agent: FlexPO uses the Actor-Critic approach. In addition to

the actor and critic components, the Agent also incorporates

the activation predictor introduced in Section 3. All three

components are implemented as four-layer fully-connected

DNNs with residual connections [20]. The structure of the

Agent is depicted in Figure 6.

The actor accepts the feature vector generated by Au-

toPhase as input and generates an output vector (bene�cial

probability), whose length matches the number of trans-

formations. This output vector represents the probability

distribution for all transformations, with higher probabilities

assigned to transformations that are likely to yield greater

bene�ts. To generate the probability distribution, the actor

uses the attention mechanism that is widely used for Com-

puter Vision [6] and Natural Language Process [34]. The

insight of the attention mechanism is that di�erent compiler

transformations are related to di�erent features. For example,

to determine whether or not to apply −1A40: − 2A8C − 4364B

transformations, the number of critical edges in the input

vector should be an important factor, while other features,

like the number of call instructions, shouldn’t have much

e�ect. With the attention mechanism, the probabilities of

di�erent transformations are a�ected by di�erent elements

in the input vector.

To facilitate conservative pruning, the activation predic-

tor is integrated. It uses the dormant history to predict the

dormant/active status of subsequent transformations. The

output vector (active probability) of the activation predic-

tor is then element-wise multiplied with the actor’s output

vector (bene�cial probability), creating the �nal distribution

(transformation probability). This �nal distribution is used

to select the transformation to be applied next.

The critic estimates how much speed up or code size de-

crease can be achieved from the current IRs. The estimated

values is used to update the RL model.

Environment: In FlexPO, the environment applies the cho-

sen transformation to the current IR to generate a new IR.

Subsequently, the new IR is compiled to obtain the reward

value. If FlexPO is oriented towards runtime optimization,

the environment will additionally execute the compiled pro-

grams and pro�le the runtime data. This procedure can be

manually replicated as delineated in Listing 1.

When optimizing for runtime, in each iteration, the envi-

ronment needs to compile the IR and execute the program,

resulting in heavy workloads, especially when the programs

take a long time to execute. To accelerate the search process,

FlexPO utilizes caching to store previous evaluation results.

As reported in [25], many sequences generate identical IRs

253

Exponentially Expanding the Phase-Ordering Search Space via Dormant Information CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

Figure 6. The work�ow of the Agent in FlexPO.

during the search process. This occurs for two reasons: �rst,

some transformations are dormant; second, certain pairs of

transformations are independent. Therefore, changing the

order of these pairs results in the same IRs. In FlexPO, a

dictionary is utilized to record the executed IRs and their

runtime results. When the environment requires the runtime

for an LLVM IR, it �rst searches the dictionary to determine

if this IR has been evaluated previously. If the IR is found,

its evaluation result is immediately returned. Otherwise, the

environment compiles and executes the program, updates

the dictionary, and then returns the results.

1 # apply the selected transformation (LICM)

2 opt -licm LLVM_IR.bc -o LLVM_IR.bc

3 # compile the transformed IR with LLC. The O3

here is for hardware dependent optimizations ,

not the same as the O3 in Clang

4 llc -O3 -filetype=obj LLVM_IR.bc -o LLVM_IR.o

Listing 1. The instructions used in the Environment, which

apply transformations and compile LLVM IRs.
Reward: The de�nition of the reward is the improvement

obtained from applying the selected transformations. For

runtime optimization, the reward is de�ned as the normal-

ized decrease in runtime; for code size optimization, it is the

normalized reduction in code size.

'C8<4 =
AD=C8<4>;3 − AD=C8<4=4F

AD=C8<4D=>?C8<8I43

'B8I4 =
B8I4>;3 − B8I4=4F

B8I4D=>?C8<8I43

The formulas for calculating the rewards are presented

above. The term AD=C8<4D=>?C8<8I43 (B8I4D=>?C8<8I43) refers to

the runtime (code size) of the program compiled using -O0. In

FlexPO, the rewards are normalized with AD=C8<4D=>?C8<8I43

and B8I4D=>?C8<8I43 , enabling the search of programs of vari-

ous scales (e.g., those executing in milliseconds versus min-

utes) with consistent parameters.

5 Experiment

In this section, we attempt to address the following ques-

tions through our experiments:

• What is the accuracy of the activation predictor?

• Can FlexPO discover solutions that outperform manu-

ally designed optimization sequences (e.g., -Oz, -O3)?

• Is conservative pruning more e�ective than aggressive

pruning?

• What bene�ts does the activation predictor provide in

the context of FlexPO?

• How sensitive are the results to changes in hyperpa-

rameters?

5.1 Experimental Setup

5.1.1 Implementation. We implement FlexPO based on

CompilerGym [15], a toolkit designed for applying RL to

compiler optimization tasks. CompilerGym uses LLVM-10

for evaluation. Although LLVM-10 is not the latest version,

the optimization transformations between LLVM-10 and the

most recent LLVM 17 are mostly identical. There are 124

transformations in FlexPO’s search space, which are listed

in [31]. FlexPO employs the default settings for all trans-

formation parameters (e.g., pragma-unroll-threshold=16 *

1024, max-uses-for-sinking=30), aligning with the method-

ologies of other phase-ordering solutions based on the LLVM

project [3, 22]. Additionally, we use AutoPhase [18] from

CompilerGym to extract static features from LLVM IR.

5.1.2 Benchmark. The Ctuning CBench benchmark [16]

is utilized for evaluation. It encompasses a wide range of ap-

plications spanning automotive, security, o�ce, and telecom-

munications domains. For all runtime results, we evaluate

the same program �ve times, and manually analyze the re-

sults to make sure the variance and the measurement error

are small enough to be ignored. For code size, we measure

the size of the code sections in the generated binary �les.

FlexPO is evaluated to �nd the optimal sequences for

x86 architectures. We compile and execute the transformed

LLVM IRs on an 11th Gen Intel Core i7-11700 CPU backend

to obtain the code size and runtime performance.

254

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Ruobing Han and Hyesoon Kim

5.2 Activation Predictor

In this section, we verify the feasibility of using the

dormant history to predict the active status of subsequent

transformations. To accomplish this, we generate a training

dataset using the qsort program, and validation datasets

using the dijkstra and sha programs. Employing di�erent

programs for training and validation allows us to demon-

strate the generalization capability of the activation predic-

tor. While a leave-one-out cross-validation approach for all

benchmarks would be more convincing, it demands consider-

able time for dataset generation and predictor training. Given

that our primary focus is on searching for optimal sequences

rather than solely predicting active status, we allocate the

majority of computational resources to the phase-ordering

search process (Section 5.3 to 5.5). Furthermore, the success

of the search process serves as additional evidence support-

ing the validation of the activation predictor.

To construct the datasets, we randomly generate transfor-

mation sequences of 1000 transformations in length. These

sequences are applied to programs, and we record the active

statuses to construct the dataset. Each entry in the dataset

consists of a tuple with three elements: the dormant history,

the transformation under prediction, and the ground truth

label indicating the active status of the transformation. The

process of constructing the dataset is depicted in Figure 7.

Figure 7. The process of constructing datasets.

We construct a training dataset comprising 921,000 tuples,

and validation datasets consisting of 392,000 tuples from the

dijkstra program and 248,000 tuples from the sha program,

respectively. The activation predictor is trained using the

Adam optimizer [24] with a learning rate of 1e-4. The learn-

ing curve, illustrated in Figure 8, demonstrates consistent

behavior between the training and validation datasets. This

consistency indicates that the activation predictor possesses

strong generalization capabilities across di�erent programs.

Moreover, we also present the confusion matrix in Table 1.

We observe that 78% of the samples in the dijkstra dataset

and 76% in the sha dataset are negative, indicating that most

transformations are dormant. This suggests that conserva-

tive pruning has the potential to prune a signi�cant portion

of the search space.

Figure 8. The learning curves for training the activation

predictor.

Table 1. The confusion matrix for two validation datasets.

Programs
True

Positive

True

Negative

False

Positive

False

Negative

Dijkstra 57693 272344 35115 26848

SHA 37516 168456 19813 22215

5.3 FlexPO vs Oz and O3

LLVM o�ers a set of optimization levels, each de�ning

a �xed sequence of transformations. By applying these se-

quences, programs are expected to achieve improved results.

Among these levels, O3 and Oz are the most commonly used.

The O3 optimization level is designed to enhance runtime

performance, while Oz focuses on reducing code size.

In the following sections, FlexPO is utilized to �nd the se-

quences for either runtime or code size optimization. FlexPO

integrates the pretrained activation predictor (Section 5.2)

and initializes the rest of the model with random weights.

Generally, there is a high variance in the optimal sequences

identi�ed by FlexPO across di�erent programs, with no com-

mon patterns emerging from these sequences. This vari-

ability underscores the critical importance of conducting

searches for optimal sequences that are speci�cally tailored

to individual programs.

5.3.1 Runtime Optimization. In this section, FlexPO is

utilized to search for sequences that achieve the shortest run-

time. To limit the search space, FlexPO typically terminates

an episode after applying 80 transformations (iteration=80)

for most programs. However, for bitcount, patricia, qsort,

and ti�2rgba programs, we �nd that applyingmore iterations

can signi�cantly decrease runtime. Consequently, these pro-

grams undergo 350 iterations per episode. FlexPO conducts

the search process over 20 episodes. All these hyperparame-

ters are set based on empirical observations.

The results are presented in Figure 9. In 15 applications,

FlexPO successfully �nds sequences that outperform O3 in

13 of them. Speci�cally, for the stringsearch and bitcount

255

Exponentially Expanding the Phase-Ordering Search Space via Dormant Information CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

programs, FlexPO identi�es sequences that achieve 10x and

7x higher performance, respectively. On average, excluding

stringsearch and bitcount, programs compiled with FlexPO

are 12% faster than those compiled with O3.

The programs evaluated for runtime optimization rep-

resent a subset of those discussed in Section 5.3.2, which

focused on code size optimization. This discrepancy arises

due to the inability to execute certain programs, attributable

to issues such as input and runtime errors, which hinder the

measurement of their runtime performance.

Figure 9. The speed up of programs compiled by O3 and

FlexPO, compared with unoptimized programs.

1 char *strsearch(const char *string) {

2 register size_t shift;

3 register size_t pos = len - 1;

4 size_t limit=strlen(string);

5 char *here;

6 while (pos < limit) {

7 while(pos < limit && (shift = table[(unsigned

char)string[pos]]) > 0)

8 pos += shift;

9 if (0 == shift) {

10 if (0 == strncmp(findme ,here=(char *)&string

[pos -len+1],len))

11 return here;

12 else pos++;

13 }

14 }

15 return NULL;

16 }

Listing 2. The major function for the stringsearch program.
The stringsearch benchmark serves as a case study to

demonstrate the superiority of FlexPO over the O3 pipeline.

The function that dominates 99% of the execution time is

shown in Listing 2. This function features a complex control

�ow, with its performance critically dependent on branch in-

structions. The Control Flow Graphs (CFGs) of the programs,

processed by both O3 and FlexPO, are compared in Figure 10.

FlexPO generates a CFG with fewer branch instructions. As

observed in Listing 2, both the outer and inner loops share

the same condition (’pos < limit’). This similarity presents an

opportunity for more aggressive branch elimination. FlexPO

identi�ed a sequence that generates a CFGwith 6 conditional

branches, as opposed to the CFG with 7 conditional branches

created by O3. Performance metrics detailed in Table 2 re-

veal that the program optimized by FlexPO executes fewer

branch and overall instructions.

(a) CFG after O3. (b) CFG after FlexPO.

Figure 10. FlexPO �nds a transformation sequence that has

fewer branch instructions been executed, compared with O3.

Table 2. The pro�ling data for the stringsearch program.

metric unoptimized O3 FlexPO

runtime (sec) 12.231 3.692 0.104

of instructions 8.1*1e10 3.6*1e10 1*1e9

of branches 1.5*1e10 1.0*1e10 4.4*1e8

of branch-misses 5.4*1e7 1.2*1e7 4.5*1e5

5.3.2 Code Size Optimization. FlexPO is also employed

to achieve the smallest code size, measured by the number

of bytes in the text segment. We set the number of 4?8B>34B

to 15 and 8C4A0C8>=B to 150. The results are presented in Fig-

ure 11. On average, FlexPO is capable of generating programs

with text segments that are 17% smaller compared to those

compiled with Oz.

5.4 Aggressive vs. Conservative Pruning

This section aims to compare the di�erences between

utilizing prede�ned sequences (aggressive pruning) and indi-

vidual transformations (conservative pruning) in the search

process. We use the sequences proposed in MiCOMP [3]

and POSET-RL [22] as representatives of aggressive prun-

ing. MiCOMP categorizes the transformations within the O3

pipeline into �ve sequences, while POSET-RL formulates 15

sequences by splitting the Oz pipeline.

To ensure comparability, the same RL model and search

algorithm are employed for both pruning strategies. The

256

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Ruobing Han and Hyesoon Kim

Figure 11. The code size improvement. The value is com-

puted as $I 2>34 B8I4
�;4G%$ 2>34 B8I4

.

primary distinction lies in the agent’s choice of action: it

selects sequences of transformations for aggressive pruning

and individual transformations for conservative pruning.

To ensure a fair comparison, all search episodes are termi-

nated after applying 80 transformations. MiCOMP employs

�ve sequences with lengths of 36, 2, 3, 1, and 4. To form a

sequence of length 80, approximately 3 ∗ 10
22 di�erent com-

binations are possible, representing the size of the search

space. In the case of POSET-RL, which includes 15 sequences,

the search space is approximately 9 ∗ 10
16. For FlexPO, the

search space expands to 124
80, signi�cantly larger than both

MiCOMP and POSET-RL.

In Figure 12a, we visualize the search process for run-

time improvement. The �gure illustrates the speed-up com-

pared to unoptimized programs. The sequences proposed by

MiCOMP, derived from the O3 pipeline, incorporate prior

knowledge from human experts. Consequently, searches

based on these sequences can identify e�ective solutions

within a few episodes. Conversely, FlexPO explores a larger

search space and requiresmore episodes to converge to an op-

timal solution. Nonetheless, the solutions obtained by FlexPO

consistently outperform those from MiCOMP. A similar con-

clusion is drawn when comparing FlexPO with POSET-RL

for code size improvement, as shown in Figure 12b.

The evaluations indicate that FlexPO (conservative prun-

ing) can produce superior solutions, albeit with an increased

search time. In contrast, aggressive pruning relies on pre-

de�ned sequences derived from human expertise, which

tends to yield suboptimal solutions more quickly.

5.5 Validation of the Activation Predictor

The activation predictor is utilized to bypass dormant

transformations, thereby potentially facilitating the search of

optimal solutions with fewer search iterations. This section

compares the e�cacy of searching with and without the

assistance of the activation predictor.

(a) FlexPO vs MiCOMP for runtime improvement.

(b) FlexPO vs POSET-RL for code size improvement.

Figure 12. Comparison of FlexPO with aggressive pruning.

We execute FlexPO for 10 episodes, with each episode

consisting of only 10 iterations. The search process is visu-

alized in Figure 13 for three applications: susan, qsort, and

stringsearch. Without the activation predictor, the highest

improvements are close to the unoptimized programs. This

indicates that, in the absence of the activation predictor,

the transformations explored by FlexPO do not signi�cantly

change the programs. Conversely, with the activation predic-

tor, FlexPO avoids exploring these dormant transformations,

enabling signi�cant runtime improvement by applying only

10 transformations.

5.6 Cost for Search

The search time depends on the following four factors: the

number of episodes �, the number of iterations !, the time to

get reward information ', and the process) for updating the

RL model. The amount of time can be roughly calculated as

�∗!∗'+�∗) . Since FlexPO uses lightweight DNNs,) is much

smaller than '. Thus, the amount of time can be regarded as

� ∗! ∗'. For code size improvement, ' is the time to compile

257

Exponentially Expanding the Phase-Ordering Search Space via Dormant Information CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

Figure 13. The search process with/without the activation

predictor with only 10 iterations.

the program, while for runtime improvement, ' includes the

execute time additionally. Both � and ! are hyperparameters.

� is the number of times to search from the unoptimized IRs

(explore), while ! is the depth for each search (exploit). For

FlexPO, each iteration selects a transformation. Thus, ! is

also the maximum length of the transformation sequence.

To investigate the relationship between search time and

search outcomes, as well as the sensitivity of the search re-

sults to the number of episodes and iterations, we conduct

two experiments. Firstly, we set the number of episodes �

to 10 and vary the number of iterations !. Secondly, we �x

the number of iterations ! at 60 and vary the number of

episodes �. The results of these experiments are presented

in Figure 14. In general, FlexPO �nds better solutions with

larger numbers of iterations or episodes. However, the over-

head (� ∗!) increases linearly with the number of episodes or

iterations. Thus, these hyperparameters serve as adjustable

knobs for users to balance the trade-o� between search time

and output quality.

In our evaluation, we �nd that setting � = 20 and ! = 80 is

su�cient to discover solutions that outperform O3 for most

applications. The evaluations in Section 5.3 employ this con-

�guration and successfully identify sequences that surpass

O3. The dijkstra program, having the longest execution time

(the largest '), consequently requires the longest search time.

With � = 20 and ! = 80, the search takes approximately 66

minutes. However, as discussed in Section 4, some IRs appear

repeatedly during the search. FlexPO only executes them

upon their �rst occurrence. Therefore, in practical situations,

the actual search time is signi�cantly shorter, approximately

15 minutes in our evaluations.

6 Related work

6.1 History of Phase-Ordering Problem

In the early days, researchers utilized ?A4382C8E4 ℎ4DA8BC82B

to directly �nd an optimal transformation sequence without

the need for multiple compilations of a program. However,

(a) Exploit.

(b) Explore.

Figure 14. Generally, FlexPO identi�es better solutions with

a greater number of episodes (exploration) or iterations (ex-

ploitation). However, the cost of the search increases linearly

with the number of episodes or iterations.

due to the rapidly increasing number of transformations [5]

and the unpredictable interactions between them [37], these

methods often resulted in suboptimal outcomes [33]. In more

recent times, most researchers [1, 4, 8, 9] have shifted to

8C4A0C8E4 2><?8;0C8>=. This approach involves compiling pro-

grams with various transformation sequences, evaluating

the generated code, and selecting the best performer. Com-

pared to predictive heuristics, iterative compilation bases its

evaluations on the actual generated code, leading to more

e�ective solutions [33].

Recently, Machine Learning has become a popular choice.

Some researchers use Genetic Algorithms (GA) to search the

optimal sequences [10, 11, 25]. These methods generate a

number of 64=4B (transformation sequences) and compile

the programs accordingly to evaluate the �tness value for

each gene and select the best ones. These methods cannot

utilize the information about programs and always require a

long time to get good solutions.

Some researchers propose solutions to utilize the pro-

grams’ information during the search. Agakov et al. [1] form

several classical programs into a dataset and use either the

258

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Ruobing Han and Hyesoon Kim

Markov model or the Independent Identically Distributed

model to learn the distribution of which transformations

work well for each program in the dataset. For a new pro-

gram, the algorithm captures the program’s features and

�nds which program ? in the dataset has the closest fea-

ture. Then, use the distribution learned by ? to sample a

sequence as the output. Martins et al. [30] use a similar

method to implement the search process with GA. Their

method uses static features such as whether the loops have

calls and the number of instructions in loops. The static

features can be captured directly from the programs, with-

out the need to execute. These features are easily captured

but contain limited information. Cavazos et al. [9] utilize

dynamic features (e.g., cache miss, branch miss) to build

the model. These dynamic features depend on special hard-

ware, which cannot be migrated to other architectures. Some

projects [2, 4] use microarchitecture-independent workload

characterization [21] to make the trained model portable to

di�erent hardware. Instead of relying on pro�ling tools to

analyze the programs, some researchers use Deep Neural

Networks to parse source code. Cummins et al. [13] use a

Recurrent Neural Network to map source code into a �xed-

length vector. This method regards code as strings, which

do not capture the topology information. Neural Code Com-

prehension [7] proposes a contextual �ow graph to capture

data�ow information as well. ProGraML [12] further cap-

tures the control �ow information. The outputs of ProGraML

are graphs, which need to be trained with Graph Neural Net-

works. IR2Vec [36] maps LLVM IRs to vectors.

ML is also used for the search process. [28] trains a Neu-

ral Network, which accepts the feature vectors for the pro-

grams and generates the selected transformations. [2] uses

MLmodels to predict the speed up for a given transformation

sequence; [35] uses ML models to predict the performance

by using the hardware features as inputs. Both methods can

avoid the overhead to execute programs on real hardware.

MiCOMP [3] uses the recommendation system knowledge

to explore the search space to avoid the local minima. [14]

proposes to directly pass the LLVM IR to the Large Language

Model and get the optimal sequences to reduce the code size.

As an important area in Machine Learning, Reinforce-

ment Learning also has been used for solving the phase-

ordering problem. Mammadli et al. [29] utilize Deep Rein-

forcement Learning to solve the phase-ordering problem.

Their framework supports searching on di�erent granular-

ities: sequences of transformations (coarse-grained), trans-

formations with default arguments (�ne-grained), and trans-

formations and their arguments (�ner-grained). However,

as reported by the authors, the framework can hardly �nd

sequences that signi�cantly surpass O3. POSET-RL [22] uses

RL to search for transformation sequences to reduce the code

size. They implement the search process with the aggressive

pruning; they cluster the transformations in the Oz pipeline

into 15 or 34 sequences and search on them.

Comparedwith these relatedworks [3, 22], FlexPO searches

on transformations instead of sequences. Thus, FlexPO has

a larger search space. Although the framework in [29] also

searches on transformations, the framework �nds sequences

that surpass the LLVM O3 pipeline only around 3% in a rea-

sonable time. This is due to it doesn’t apply pruning during

searches. Instead, FlexPO applies conservative pruning and

�nds sequences 12% better than the LLVM O3 pipeline.

6.2 Dormant Transformation

The insight of conservative pruning is that some transfor-

mations are dormant. There are other researchers who also

utilize the dormant information. Some researchers [25, 27]

manually collect the rules about which transformations are

dormant after applying given transformations. For example,

if A468BC4A 0;;>20C8>= has been applied, the A468BC4A 0;;>20C8>=

will become dormant until any transformations that change

the register pressure are applied. They integrate these rules

into the Genetic Algorithm, which prunes the sequences that

contain dormant transformations and makes GA coverage

with fewer generations. These rules are collected manually,

which is impractical when there are a large number of trans-

formations. Thus, they only evaluate a search space that

contains 15 transformations. In contrast, FlexPO implements

an activation predictor to learn these rules, enabling our

solution to e�ciently handle large search spaces without

reliance on prior knowledge.

[23] trains a predictor to predict which transformations in

the LLVM O3 pipeline are dormant for a given program. By

skipping these transformations, the compiler can save com-

pilation time. [19] records dormant transformations during

the build process to speed up incremental builds by skipping

these dormant transformations.

7 Conclusion

The phase-ordering problem is challenging due to the

large search space. Existing solutions rely on prior knowl-

edge from human experts to aggressively prune the search

space, which may exclude optimal solutions and is not scal-

able to new transformations.

In this paper, we propose conservative pruning, which

ensures that the optimal solutions remain within the search

space during the pruning process. The insight behind conser-

vative pruning is utilizing the dormant history to predict the

dormant status for subsequent transformations, to guide the

search process focusing on transformations that are likely to

be activated. Conservative pruning does not rely on human

expertise and is scalable to new transformations. We intro-

duce FlexPO, a toolkit that integrates conservative pruning

with a RL model to solve the phase-ordering problem. Our

experimental results demonstrate that FlexPO generates pro-

grams that are 12% faster than those optimized with O3 and

17.6% smaller than those optimized with Oz on average.

259

Exponentially Expanding the Phase-Ordering Search Space via Dormant Information CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

References
[1] Felix Agakov, Edwin Bonilla, John Cavazos, Björn Franke, Grigori

Fursin, Michael FP O’Boyle, John Thomson, Marc Toussaint, and

Christopher KI Williams. 2006. Using machine learning to focus itera-

tive optimization. In International Symposium on Code Generation and

Optimization (CGO’06). IEEE, 11–pp.

[2] Amir Hossein Ashouri, Andrea Bignoli, Gianluca Palermo, and Cristina

Silvano. 2016. Predictive modeling methodology for compiler phase-

ordering. In Proceedings of the 7th Workshop on Parallel Programming

and Run-Time Management Techniques for Many-core Architectures

and the 5th Workshop on Design Tools and Architectures For Multicore

Embedded Computing Platforms. 7–12.

[3] Amir H Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano,

Sameer Kulkarni, and John Cavazos. 2017. Micomp: Mitigating the

compiler phase-ordering problem using optimization sub-sequences

and machine learning. ACM Transactions on Architecture and Code

Optimization (TACO) 14, 3 (2017), 1–28.

[4] Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung

Park, John Cavazos, and Cristina Silvano. 2016. Cobayn: Compiler

autotuning framework using bayesian networks. ACM Transactions

on Architecture and Code Optimization (TACO) 13, 2 (2016), 1–25.

[5] David F Bacon, Susan L Graham, and Oliver J Sharp. 1994. Compiler

transformations for high-performance computing. ACM Computing

Surveys (CSUR) 26, 4 (1994), 345–420.

[6] Hangbo Bao, Li Dong, and Furu Wei. 2021. Beit: Bert pre-training of

image transformers. arXiv preprint arXiv:2106.08254 (2021).

[7] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoe�er. 2018.

Neural code comprehension: A learnable representation of code se-

mantics. Advances in Neural Information Processing Systems 31 (2018).

[8] François Bodin, Toru Kisuki, Peter Knijnenburg, Mike O’Boyle, and

Erven Rohou. 1998. Iterative compilation in a non-linear optimisation

space. In Workshop on pro�le and feedback-directed compilation.

[9] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael FP

O’Boyle, and Olivier Temam. 2007. Rapidly selecting good compiler

optimizations using performance counters. In International Symposium

on Code Generation and Optimization (CGO’07). IEEE, 185–197.

[10] Keith D Cooper, Philip J Schielke, and Devika Subramanian. 1999. Opti-

mizing for reduced code space using genetic algorithms. In Proceedings

of the ACM SIGPLAN 1999 workshop on Languages, compilers, and tools

for embedded systems. 1–9.

[11] Keith D Cooper, Devika Subramanian, and Linda Torczon. 2002. Adap-

tive optimizing compilers for the 21st century. The Journal of Super-

computing 23, 1 (2002), 7–22.

[12] Chris Cummins, Zacharias V Fisches, Tal Ben-Nun, Torsten Hoe�er,

and Hugh Leather. 2020. Programl: Graph-based deep learning for

program optimization and analysis. arXiv preprint arXiv:2003.10536

(2020).

[13] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.

2017. End-to-end deep learning of optimization heuristics. In 2017

26th International Conference on Parallel Architectures and Compilation

Techniques (PACT). IEEE, 219–232.

[14] Chris Cummins, Volker Seeker, Dejan Grubisic, Mostafa Elhoushi,

Youwei Liang, Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Kim

Hazelwood, Gabriel Synnaeve, et al. 2023. Large language models for

compiler optimization. arXiv preprint arXiv:2309.07062 (2023).

[15] Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel,

Sahir Gomez, Somya Jain, Jia Liu, Olivier Teytaud, Benoit Steiner, et al.

2022. CompilerGym: robust, performant compiler optimization envi-

ronments for AI research. In 2022 IEEE/ACM International Symposium

on Code Generation and Optimization (CGO). IEEE, 92–105.

[16] Grigori Fursin and Olivier Temam. 2010. Collective optimization: A

practical collaborative approach. ACM Transactions on Architecture

and Code Optimization (TACO) 7, 4 (2010), 1–29.

[17] Zhangxiaowen Gong, Zhi Chen, Justin Szaday, David Wong, Zehra

Sura, Neftali Watkinson, Saeed Maleki, David Padua, Alexander Vei-

denbaum, Alexandru Nicolau, et al. 2018. An empirical study of the

e�ect of source-level loop transformations on compiler stability. Pro-

ceedings of the ACM on Programming Languages 2, OOPSLA (2018),

1–29.

[18] Ameer Haj-Ali, Qijing Jenny Huang, John Xiang, WilliamMoses, Krste

Asanovic, John Wawrzynek, and Ion Stoica. 2020. Autophase: Jug-

gling hls phase orderings in random forests with deep reinforcement

learning. Proceedings of Machine Learning and Systems 2 (2020), 70–81.

[19] Ruobing Han, Jisheng Zhao, and Hyesoon Kim. 2024. Enabling Fine-

Grained Incremental Builds By Making Compiler Stateful. In 2024

IEEE/ACM International Symposium on Code Generation and Optimiza-

tion (CGO). IEEE.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 770–778.

[21] Kenneth Hoste and Lieven Eeckhout. 2007. Microarchitecture-

independent workload characterization. IEEEmicro 27, 3 (2007), 63–72.

[22] Shalini Jain, Yashas Andaluri, S VenkataKeerthy, and Ramakrishna

Upadrasta. 2022. POSET-RL: Phase ordering for Optimizing Size and

Execution Time using Reinforcement Learning. In 2022 IEEE Interna-

tional Symposium on Performance Analysis of Systems and Software

(ISPASS). IEEE, 121–131.

[23] Tarindu Jayatilaka, Hideto Ueno, Giorgis Georgakoudis, EunJung Park,

and Johannes Doerfert. 2021. Towards compile-time-reducing com-

piler optimization selection via machine learning. In 50th International

Conference on Parallel Processing Workshop. 1–6.

[24] Diederik P Kingma and Jimmy Ba. 2014. Adam: Amethod for stochastic

optimization. arXiv preprint arXiv:1412.6980 (2014).

[25] Prasad Kulkarni, Stephen Hines, Jason Hiser, David Whalley, Jack

Davidson, and Douglas Jones. 2004. Fast searches for e�ective opti-

mization phase sequences. ACMSIGPLANNotices 39, 6 (2004), 171–182.

[26] Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwan Cho,

David Whalley, Jack Davidson, Mark Bailey, Yunheung Paek, and Kyle

Gallivan. 2003. Finding e�ective optimization phase sequences. ACM

SIGPLAN Notices 38, 7 (2003), 12–23.

[27] Prasad A Kulkarni, David B Whalley, Gary S Tyson, and Jack W David-

son. 2009. Practical exhaustive optimization phase order exploration

and evaluation. ACM Transactions on Architecture and Code Optimiza-

tion (TACO) 6, 1 (2009), 1–36.

[28] Sameer Kulkarni and John Cavazos. 2012. Mitigating the compiler

optimization phase-ordering problem using machine learning. In Pro-

ceedings of the ACM international conference on Object oriented pro-

gramming systems languages and applications. 147–162.

[29] Rahim Mammadli, Ali Jannesari, and Felix Wolf. 2020. Static neu-

ral compiler optimization via deep reinforcement learning. In 2020

IEEE/ACM 6th Workshop on the LLVM Compiler Infrastructure in HPC

(LLVM-HPC) and Workshop on Hierarchical Parallelism for Exascale

Computing (HiPar). IEEE, 1–11.

[30] Luiz GA Martins, Ricardo Nobre, Joao MP Cardoso, Alexandre CB

Delbem, and Eduardo Marques. 2016. Clustering-based selection for

the exploration of compiler optimization sequences. ACM Transactions

on Architecture and Code Optimization (TACO) 13, 1 (2016), 1–28.

[31] Facebook research. 2020. Available transformations in CompilerGym.

h�ps://compilergym.com/llvm/index.html.

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv

preprint arXiv:1707.06347 (2017).

[33] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and

David I August. 2003. Compiler optimization-space exploration. In

International Symposium on Code Generation and Optimization, 2003.

CGO 2003. IEEE, 204–215.

260

https://compilergym.com/llvm/index.html

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Ruobing Han and Hyesoon Kim

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. At-

tention is all you need. Advances in neural information processing

systems 30 (2017).

[35] Kapil Vaswani, Matthew J Thazhuthaveetil, YN Srikant, and PJ Joseph.

2007. Microarchitecture sensitive empirical models for compiler opti-

mizations. In International Symposium on Code Generation and Opti-

mization (CGO’07). IEEE, 131–143.

[36] S VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar

Desarkar, Ramakrishna Upadrasta, and YN Srikant. 2020. Ir2vec: Llvm

ir based scalable program embeddings. ACM Transactions on Architec-

ture and Code Optimization (TACO) 17, 4 (2020), 1–27.

[37] Deborah L Whit�eld and Mary Lou So�a. 1997. An approach for

exploring code improving transformations. ACM Transactions on

Programming Languages and Systems (TOPLAS) 19, 6 (1997), 1053–

1084.

Received 13-NOV-2023; accepted 2023-12-23

261

	Abstract
	1 Introduction
	2 Background
	2.1 Phase Ordering
	2.2 Reinforcement Learning Solution

	3 Dormant History
	3.1 The Importance of Dormant History
	3.2 Utilizing Dormant History

	4 FlexPO
	5 Experiment
	5.1 Experimental Setup
	5.2 Activation Predictor
	5.3 FlexPO vs Oz and O3
	5.4 Aggressive vs. Conservative Pruning
	5.5 Validation of the Activation Predictor
	5.6 Cost for Search

	6 Related work
	6.1 History of Phase-Ordering Problem
	6.2 Dormant Transformation

	7 Conclusion
	References

